
www.manaraa.com

Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-23-2018

Passive Radiolocation of IEEE 802.11 Emitters
using Directional Antennae
Bradford E. Law

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Information Security Commons, and the Systems and Communications Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Law, Bradford E., "Passive Radiolocation of IEEE 802.11 Emitters using Directional Antennae" (2018). Theses and Dissertations. 1812.
https://scholar.afit.edu/etd/1812

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F1812&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1812&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F1812&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1812&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholar.afit.edu%2Fetd%2F1812&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=scholar.afit.edu%2Fetd%2F1812&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/1812?utm_source=scholar.afit.edu%2Fetd%2F1812&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

www.manaraa.com

PASSIVE RADIOLOCATION OF IEEE 802.11
EMITTERS USING DIRECTIONAL

ANTENNAE

THESIS

Bradford E. Law, Capt, USAF

AFIT-ENG-MS-18-M-040

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

www.manaraa.com

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

www.manaraa.com

AFIT-ENG-MS-18-M-040

PASSIVE RADIOLOCATION OF IEEE 802.11 EMITTERS

USING DIRECTIONAL ANTENNAE

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Cyber Operations

Bradford E. Law, B.S.E.E.

Capt, USAF

March 2018

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

www.manaraa.com

AFIT-ENG-MS-18-M-040

PASSIVE RADIOLOCATION OF IEEE 802.11 EMITTERS

USING DIRECTIONAL ANTENNAE

THESIS

Bradford E. Law, B.S.E.E.
Capt, USAF

Committee Membership:

Barry E. Mullins, Ph.D., P.E.
Chair

Timothy H. Lacey, Ph.D., CISSP
Member

Robert F. Mills, Ph.D.
Member

www.manaraa.com

AFIT-ENG-MS-18-M-040

Abstract

Low-cost commodity hardware and cheaper, more capable consumer-grade drones

make the threat of home-made, inexpensive drone-mounted wireless attack platforms

(DWAPs) greater than ever. Fences and physical security do little to impede a drone

from approaching private, commercial, or government wireless access points (WAPs)

and conducting wireless attacks. At the same time, unmanned aerial vehicles (UAVs)

present a valuable tool for network defenders conducting site surveys and emulating

threats.

These platforms present near-term dangers and opportunities for corporations

and governments. Despite the vast leaps in technology these capabilities represent,

UAVs are noisy and consequently difficult to conceal as they approach a potential

target; stealth is a valuable asset to an attacker. Using a directional antenna instead

of the typical omnidirectional antenna would significantly increase the distance from

which a DWAP may conduct attacks and would improve their stealthiness and overall

effectiveness.

This research seeks to investigate the possibility of using directional antennae on

DWAPs by resolving issues inhibiting directional antennae use on consumer and hob-

byist drone platforms. This research presents the hypothesis that a DWAP equipped

with a directional antenna can predict bearings and locations of WAPs within an

acceptable margin of error.

iv

www.manaraa.com

A ground-based hardware prototype is constructed to test this hypothesis by em-

ulating an airborne UAV platform. localizer, a framework written in Python, is

built to manage synchronous control of the data capture process to enable directed

capture of data that is used to optimize radiolocation techniques. This data is ana-

lyzed and used to determine optimal capture parameters for predicting WAP bearing

and location. Using these values, data is captured using the prototype and localizer

framework to produce data sets for analysis.

The data captured is analyzed and bearing prediction error rates are reviewed

for different interpolation techniques. The optimal interpolation technique, Piece-

wise Cubic Hermite Interpolating Polynomial (PCHIP), produces a median bearing

prediction error of less than 14°. This research uses a least-squares optimization of

multiple bearing predictions (rays) to predict the location of a given WAP over mil-

lions of combinations of real data sets. The location prediction performance is less

accurate than expected, with a median error of more than 60 m; an in-depth analysis

of these results is presented.

Using a directional antenna on a UAV brings distinct advantages. This research

identifies a viable way for an airborne DWAP to scan, identify, and locate WAPs from

a safe distance, maintaining operational stealth while performing computer network

operations (CNO).

v

www.manaraa.com

Acknowledgements

To my sweetheart, our beloved children, and above all, my Creator,

to all who so abundantly bless me, thank you.

www.manaraa.com

Table of Contents

Page

Abstract . iv

Acknowledgements . vi

List of Figures . xi

List of Tables . xiii

List of Terms and Abbreviations . xiv

I. Introduction . 1

1.1 Background . 1
1.2 Problem Statement . 2
1.3 Research Goals . 3
1.4 Hypothesis . 4

1.4.1 Hypothesized Capture Method . 5
1.5 Approach . 6
1.6 Assumptions and Limitations . 7
1.7 Contributions . 8
1.8 Thesis Overview. 9

II. Background and Related Research . 10

2.1 Overview . 10
2.2 Radio Performance Comparisons . 10

2.2.1 Omnidirectional Antennae . 11
2.2.2 Directional Antennae . 11

2.3 Radiolocation . 11
2.3.1 Received Signal Strength Indication . 14
2.3.2 Time of Arrival . 16
2.3.3 Time Difference of Arrival . 17
2.3.4 Angle of Arrival . 18
2.3.5 Triangulation . 20
2.3.6 Trilateration . 20
2.3.7 Weighted-Centroid-Based Algorithms . 21
2.3.8 Probabilistic-Based Algorithms . 21
2.3.9 Wi-Fi Principles . 23

2.4 Radiolocation Applications . 24
2.4.1 Emergency Response . 24
2.4.2 Wardriving . 24
2.4.3 Computer Network Operations . 26

2.5 Sparse Data Interpolation . 29

vii

www.manaraa.com

Page

2.6 Summary . 30

III. Prototype Design . 31

3.1 Overview . 31
3.2 Prototype Hardware . 32
3.3 Prototype Software . 40
3.4 Modules . 41

3.4.1 shell.py . 41
3.4.2 capture.py . 42
3.4.3 gps.py . 45
3.4.4 interface.py . 45
3.4.5 antenna.py . 45
3.4.6 process.py . 47
3.4.7 locate.py . 48

3.5 Summary . 48

IV. Methodology . 49

4.1 Overview . 49
4.2 System Under Test . 49
4.3 Experiment Objectives . 49
4.4 Parameters . 51
4.5 Metrics . 53
4.6 Experiment Environment . 58
4.7 Experimental Design . 63

4.7.1 Treatments . 63
4.7.2 Testing Process . 67

4.8 Summary . 69

V. Results and Analysis . 70

5.1 Overview . 70
5.2 Stepper Motor Missteps . 70

5.2.1 Temperature . 70
5.2.2 Reset Rate . 71

5.3 Parameter Discovery Analysis . 73
5.3.1 Rotation rate . 73
5.3.2 Focused capture rotation rate . 74
5.3.3 Channel hop interval . 76
5.3.4 Channel hop distance . 76

5.4 Positional Capture Analysis . 77
5.4.1 Interpolation . 79
5.4.2 Bearing Error Analysis . 80
5.4.3 Location Error Analysis . 83

viii

www.manaraa.com

Page

5.5 Focused Capture Analysis . 92

5.5.1 Focused capture width . 92
5.5.2 Focused Capture Analysis Summary . 92

5.6 Analysis Summary . 94

VI. Discussion and Conclusion . 95

6.1 Overview . 95

6.2 Research Conclusions . 95

6.3 Research Significance . 97

6.4 Future Work . 97

Appendix A. localizer Manual . 99

A.1 Initial Installation . 99

A.2 Interactive Shell . 100

A.2.1 Parameters . 101

A.2.2 Debug Logging . 101

A.2.3 HTTP Server . 102

A.2.4 Wide Capture . 102

A.2.5 Focused Capture . 102

A.2.6 Connect . 103

A.3 Batch Capture . 103

A.4 Batch Processing . 103

Appendix B. localizer Source Code . 105

B.1 Setup and Initialization Code . 105

B.1.1 setup.py . 105

B.1.2 localizer/main.py . 106

B.1.3 localizer/ init .py . 107

B.2 Utilities . 111

B.2.1 localizer/meta.py . 111

B.2.2 localizer/locate.py . 118

B.2.3 localizer/shell.py . 119

B.3 Capture & Processing . 135

B.3.1 localizer/capture.py . 135

B.3.2 localizer/antenna.py . 141

B.3.3 localizer/gps.py . 147

B.3.4 localizer/interface.py . 150

B.3.5 localizer/process.py . 156

ix

www.manaraa.com

Page

Appendix C. Utilities . 165

C.1 Sigmoid Model: model.py . 165
C.2 Coprime Hop Interval Generator: generate hop int.py 165

Appendix D. localizer Capture Configurations . 167

D.1 Treatment 1a: discovery-duration-capture.conf 167
D.2 Treatment 1b: discovery-duration-capture-2.conf 167
D.3 Treatment 2:

discovery-duration-fixed-capture.conf . 168
D.4 Treatment 3: discovery-hop-capture.conf . 169
D.5 Treatment 4: discovery-hop-dist-capture.conf 170
D.6 Treatment 5: capture-1-capture.conf . 170
D.7 Treatment 6: capture-2-capture.conf . 171
D.8 Treatment 7: capture-3-capture.conf . 171
D.9 Treatment 8: capture-1-focused-capture.conf 171
D.10Treatment 9: capture-2-focused-capture.conf 172

Appendix E. Additional Charts and Tables . 173

Appendix F. Least Squares Ray Optimization: vectors.py 177

Bibliography . 183

x

www.manaraa.com

List of Figures

Figure Page

1 Dipole Radiation Pattern . 12

2 Yagi Radiation Pattern . 13

3 Decibel-Milliwatt to Milliwatt Scale . 15

4 Time of Arrival - One Receiver for Distance, Two
Receivers for Location . 17

5 Angle of Arrival - Multiple Receivers Determine Emitter
Location . 19

6 Weighted-Centroid Localization Algorithm . 22

7 Wardriving Interest Relative to Peak in 2004 . 26

8 Map of Wi-Fi Access Points from Wardriving . 27

9 Detailed Map of Wi-Fi Access Points from Wardriving 27

10 Prototype Schematic . 36

11 Experiment Platform and Power Source . 38

12 Assembled Prototype . 39

13 System Under Test and Component Under Test . 50

14 Wireless Access Point Locations (Map data: Google) 61

15 Capture Locations (Map data: Google) . 62

16 Reset Rotation Rate RRr (Sigmoid) . 73

17 Rotation Rate (RR) Treatment Results . 75

18 Focused Capture Rotation Rate (FCRR) Treatment
Results . 76

19 Channel Hop Interval (CHI) Treatment Results . 77

20 Channel Hop Distance (CHD) Treatment Results 78

xi

www.manaraa.com

Figure Page

21 Interpolation of 5-Sample Capture using PCHIP and
BPoly Interpolation Methods . 81

22 Interpolation Performance Per Beacon Sample Size 82

23 PCHIP Error Statistics . 84

24 PCHIP Interpolation Quartiles By Beacon Sample Size 84

25 Interpolation Series Per Beacon Sample Size . 85

26 PCHIP Polar Prediction Histogram . 85

27 Location Errors for Capture Sets of Two and Three
Locations . 87

28 Location Error Examples . 89

28 Location Error Examples (cont.) . 90

29 Location Errors for 2 and 3 Captures With Constraints 91

30 Bearing Error as a Function of Focused Capture Width 93

31 Bearing Error Histogram with a Focused Capture
Width of 84° . 93

32 PCHIP Prediction Histograms Per BSSID (Treatment 5) 173

33 PCHIP Prediction Histograms Per BSSID (Treatment 6) 174

34 PCHIP Prediction Histograms Per BSSID (Treatment 7) 175

xii

www.manaraa.com

List of Tables

Table Page

1 Prototype Hardware Overview . 37

2 Airborne Prototype Hardware Cost and Weight . 37

3 localizer Dependencies . 41

4 Capture Thread Roles . 43

5 Capture Thread Outputs . 43

6 Metadata Fields . 44

7 Experiment Parameters . 54

8 Held-Constant Parameters . 54

9 Performance Metrics . 56

10 Wireless Access Point Configurations & Locations 59

11 Wireless Access Point Models & Firmware . 59

12 Capture Locations . 60

13 Parameter Discovery Treatments . 65

14 Positional Capture Treatments . 66

15 Focused Capture Treatments . 67

16 Interpolation Performance . 79

17 Location Constraints . 88

18 Optimal Parameters . 94

19 Best Interpolation Method Per Sample Size . 176

xiii

www.manaraa.com

List of Terms and Abbreviations

AOA Angle of Arrival

A technique used to measure the direction of an emitter by measuring the signal

arrival across elements of an antenna array.

BSSID Basic Service Set Identifier

A unique media access control (MAC) address that identifies the source access

point or router for the wireless network.

BO Beacons Observed

The number of beacons observed during a single capture.

BPS Beacons per Second

The rate at which beacons are observed during a particular capture.

BE Bearing Error

The difference between true bearing (TB) and peak RSSI (PR).

CD Capture Duration

The length of time that a capture is performed.

CO Capture Overhead

The amount of time overhead necessary to conduct a capture.

CPO Capture Processing Overhead

The amount of time necessary to process a capture and generate bearing pre-

dictions for any observed wireless access point (WAP).

CW Capture Width

The number of degrees the antenna is rotated during a particular capture.

xiv

www.manaraa.com

CHD Channel Hop Distance

The number of channels to skip when channel hopping.

CHI Channel Hop Interval

The amount of time to wait before hopping to the next channel.

CNA Computer Network Attack

Attacking a network in an attempt to disrupt, deny, degrade, or destroy infor-

mation or connected systems.

CNE Computer Network Exploitation

Any action taken to gain unauthorized access to networked systems in order to

gather intelligence.

CNO Computer Network Operations

Actions taken against a target computer system, including computer network

exploitation (CNE) and computer network attack (CNA).

dBi Decibel-Isotropic

A logarithmic measurement of forward antenna gain relative to a reference hy-

pothetical isotropic antenna.

dBm Decibel-Milliwatt

A logarithmic measurement of power ratio to a reference value of 1 mW

DT Detection Time

The amount of overall time necessary to capture data.

DWAP Drone-Mounted Wireless Attack Platform

A wireless attack platform built on a unmanned aerial vehicle (UAV), potentially

composed of low-cost consumer-grade hardware and free open source software

(OSS) software.

xv

www.manaraa.com

FCRR Focused Capture Rotation Rate

The rotation rate (RR) used when conducting a focused capture.

FCW Focused Capture Width

The capture width (CW) used when conducting a focused capture.

GPIO General Purpose Input and Output

An array of specialized input and output pins present on the Raspberry Pi that

allows analog and digital signaling to external devices.

GPS Global Positioning System

A global system of satellites that enables precise navigational and surveying

facility.

IB Initial Bearing

The bearing that the antenna is facing when a capture begins.

LE Location Error

The distance between predicted position (PP) and TP.

mW Milliwatt

Unit of measurement for power of received signal strength indication (RSSI).

OSS Open Source Software

Free computer software with freely-available source code.

PR Peak RSSI

The bearing where the highest received signal strength indication (RSSI) is

recorded.

xvi

www.manaraa.com

PP Predicted Position

The position of a wireless access point (WAP) that is predicted by the localizer

framework.

PWM Pulse Width Modulation

A modulation technique used to control the speed of the stepper motor via the

stepper motor controller.

RSSI Received Signal Strength Indication

A measure of the energy observed by an antenna when receiving a signal.

RR Rotation Rate

The antenna rate of rotation during a capture.

SSH Secure Shell

Secure communication protocol that is used to connect to the prototype.

SSID Service Set Identifier

A sequence of characters that uniquely names a wireless local area network; a

wireless local area network name.

SNR Signal-To-Noise Ratio

A measure that compares the level of a desired signal to the level of background

noise.

TDOA Time Difference of Arrival

A technique used to measure the location of an emitter by comparing the times

a signal is received by multiple, synchronized receivers.

xvii

www.manaraa.com

TOA Time of Arrival

A technique used to measure the distance of an emitter by comparing the time

it takes for the signal to be received by a synchronized receiver.

TU Time Unit

A unit of time equal to 1024 microseconds introduced in the IEEE 802.11 stan-

dard. 802.11 standard sets the beacon rate at one beacon every 100 TU, often

rounded to 10 beacons per second (BPS).

TB True Bearing

The real bearing to the wireless access point (WAP).

TP True Position

The true position of a wireless access point (WAP).

UAV Unmanned Aerial Vehicle

An aerial vehicle that is either controlled remotely or autonomously.

vFCW Virtual Focused Capture Width

A focused capture width (FCW) derived from a wider capture width (CW) that

is used to determine the optimal FCW.

WAP Wireless Access Point

An IEEE 802.11 hardware device that serves as a node on a local area network

and allows wireless access.

xviii

www.manaraa.com

PASSIVE RADIOLOCATION OF IEEE 802.11 EMITTERS

USING DIRECTIONAL ANTENNAE

I. Introduction

1.1 Background

Attacks on Wi-Fi networks have grown in tandem with Wi-Fi growth and adop-

tion, among private, government, and military organizations alike. Even though

attacks on Wi-Fi networks may be conducted remotely, they often require relativity

close proximity to the target, as little as 33 meters for some protocols. Physical se-

curity (i.e., fences, security guards) may also significantly increase the difficulty of

wireless attack by forcing an attacker to approach near enough to be detected.

Consider also the growing availability of low-cost unmanned aerial vehicles (UAVs),

such as fixed pitch multi-rotor helicopters (quadrocopters) and commodity hardware.

This combination has created a new wireless attack vector in the form of drone-

mounted wireless attack platforms (DWAPs). A substantial advantage of this plat-

form is that it insulates an attacker from discovery, since he may control the drone

from miles away using cheap mobile broadband. Private and government organiza-

tions also have an interest in the potential of these DWAPs as they seek to under-

stand better what threatens their network security. Threat emulation, the doctrine

of defenders emulating real-world adversarial threats as they conduct readiness exer-

1

www.manaraa.com

cises, necessitates the development of offensive security for defensive purposes. Using

drones to attack wireless networks is a real threat and is growing; network defenders

necessarily need to understand and emulate the threat to adequately defend against

it.

1.2 Problem Statement

This research is limited in scope to low-cost consumer-grade hardware and open

source software (OSS). Attack platforms built on this type of hardware typically suffer

from the unique disadvantages of being relatively loud and using low-gain omni-

directional wireless antennae. A result of this combination is that under normal

conditions, a DWAP that uses omnidirectional antennae is audible before it is within

range to conduct an attack. Consider an attacker taking a commercial hobbyist drone

close to a secure facility to attack its networks. The attacker would have to get very

close to conduct the attack. A typical drone emits around 76 dB and would be

audible within 100 meters [1]. Stealth is invaluable for an attacker, and he loses it

using traditional wireless attack techniques.

Omni-directional antennae are not ideal for long-range wireless attacks. On the

other hand, directional antennae have been in service for years conducting wireless

attacks of many kinds, since they are tuned to focus the transmission and reception of

signals in a particular area, significantly increasing transmission and receiving range.

While utilizing directional antennae on a hobbyist-grade drone solves some of

the disadvantages mentioned earlier, it also introduces new problems that must be

addressed for it to be effectively used in conducting wireless attacks. Some of the

difficulties that this research seeks to surmount include finding the right bearing to

aim the antenna to maximize both signal-to-noise ratio (SNR) and standoff distance,

which is the distance between an attacker and the target and should be maximized

2

www.manaraa.com

to decrease chances of detection. Another unique problem for directional antennae in

this context is surveying the surrounding area for potential targets. A target sweep

is conducted differently using a directional antenna than a standard omni-directional

antenna.

Furthermore, if autonomy is desired, a robust system for locating near and distant

targets is necessary; overcoming these obstacles is even more critical for autonomous

DWAPs.

1.3 Research Goals

With the possible advantages of using directional antennae, this research seeks

to overcome the obstacles that accompany directional antennae. Accurately locating

the direction of a wireless signal is of primary importance, so that the DWAP may

conduct its attack. This work intends to determine the efficacy of the proposed local-

ization method by measuring the median bearing and location errors to all experiment

wireless access points (WAPs) from multiple capture locations.

This research also presents a software project localizer that serves as a frame-

work for capturing research data, as well as performing live target bearing and lo-

cation determination. This software package has three primary roles, namely, batch

data capture, real-time data capture, and data processing. The first role, batch data

capture, is used to conduct all mass data collection for research and analysis. The

second role, real-time interactive capture, is used to demonstrate the capabilities of

the platform and is the primary mode used when conducting simulated attacks, in-

cluding from a DWAP. The third role is used to process captured data sets for future

investigation. The software is easily extended to meet the needs of future functions

and research.

3

www.manaraa.com

When used for real-time network attack, the actual target position is not the

primary interest for a DWAP; the attacker just needs to know which bearing to

direct the antenna, or which direction to move to increase the received signal strength

indication (RSSI). In scenarios of network mapping, however, the location of the

target is desired and may provide valuable intelligence about the target. This research

intends to move beyond predicting a target’s bearing and identify an optimal approach

using sets of bearing predictions to predict a target’s position.

1.4 Hypothesis

This research hypothesizes that a DWAP-mounted directional antenna may be

used to identify the bearing and location of a WAP within an acceptable margin of

error. A WAP can be discovered by a DWAP passively capturing beacons during an

initial wide capture, where the monitoring channel is changed regularly to discover

all broadcasting WAPs within range. During a wide capture, each beacon that is

received is grouped by basic service set identifier (BSSID). Each beacon in a group

is considered a single data point, consisting of two primary properties, bearing and

RSSI.

Bearing prediction accuracy is expected to improve by performing interpolation

on the sparse beacon data that creates a continuous map of the RSSI as a function

of bearing.

The DWAP may conduct a focused capture, with the channel held constant to

that of the targeted WAP, which ensures no beacons are missed due to monitoring a

different channel. This higher beacon capture rate is expected to provide improved

bearing prediction accuracy.

4

www.manaraa.com

Bearing Discovery Method. This research hypothesizes that at standard

beacon rates of one beacon every 100 TU, equivalent to one beacon every 102.4 ms,

and using optimized capture parameters, a DWAP can identify WAPs within range

and determine their respective bearings. The predicted bearings are expected to be

accurate within 45° from true bearing in a wide capture (using channel hopping), and

within 15° from true bearing using a focused capture (constant channel) width of 60°

or less.

Location Discovery Method. Additionally, this research hypothesizes that the

locations of WAPs can be discovered using multiple bearing predictions using least-

squares optimization to find the location that is closest to each bearing prediction.

These coordinates are presumed to be the optimal location prediction based on the

provided data and is hypothesized to predict with an accuracy of less than 10 m of

error from truth.

1.4.1 Hypothesized Capture Method.

The list below outlines the hypothesized method to capture data and predict

observed WAP bearings.

1. Locate an Ideal Location to Perform Capture. An ideal location is one

free of immediate obstructions between the prototype and potential emitters.

2. Initiate Wide Capture. Begin a 360° sweep, changing the monitored channel

regularly to ensure complete coverage of all channels.

3. Process Results. For each observed emitter, use an optimal interpolation

method to fill in the missing data and predict the emitter’s relative bearing.

4. Select a Target. Of the observed emitters, an operator or operational pro-

gram selects a target for a focused capture.

5

www.manaraa.com

5. Optional: Initiate Focused Capture. If a more accurate bearing is nec-

essary or desired, match the prototype capture channel to the target emitter’s

channel and perform a focused sweep centered on the predicted bearing for the

target emitter.

6. Optional: Process Results. If a focused capture is performed, the data is

processed and a prediction is made using the interpolated capture results.

7. Initiate Action. Now that a reasonably sound bearing is determined for

a target, the operator may choose to connect to the WAP, conduct computer

network operations (CNO) on it, or proceed to another location to capture more

data.

1.5 Approach

Equipment. A ground-based prototype of a DWAP is designed and constructed

consisting of a directional antenna, motor, wireless interface, power source, and pro-

cessor to execute the localizer software package, which is responsible for data cap-

ture and bearing and location prediction.

Parameter Discovery. Ideal parameters such as antenna rotation speed and

channel hop rate are discovered by capturing data with the prototype hardware. Af-

ter sufficient data has been captured for each parameter under test, the parameters’

respective beacon observation rates are compared and optimal values for each param-

eter are identified.

6

www.manaraa.com

Data Capture. Once the parameters are determined, data captures are con-

ducted repeatedly at those values until a sufficiently large data set has been collected.

Different methods of capture are also performed, such as wide captures and focused

captures.

Analysis. Captured data is analyzed to determine the bearing and location

prediction errors using the hypothesized methods. An analysis is performed on the

results to provide insight into the findings.

1.6 Assumptions and Limitations

This research is conducted under the following understood assumptions and limi-

tations, namely:

• Environmental Interference. Objects between the emitter and receiver are

assumed to be typical commercial building material and not vary significantly

between samples. The experiment location represents a “worst case” reflection

environment on the ground-level when compared to the reflections of an airborne

environment. In other words, the buildings surrounding the experiment site are

assumed to contribute to unwanted reflections significantly more so than the

non-reflective free space surrounding an airborne DWAP. With this in mind, the

localizer performance is expected to improve dramatically when the system

is deployed on a DWAP.

• Prototype Interference. Any electromagnetic interference generated by the

prototype, such as from signal wires, power sources, or stepper motor windings,

is considered non-destructive in the 2.4 GHz frequency range and is ignored.

• Weather Effects. The influence of weather (such as humidity) on the behav-

ior of beacon frames is assumed to be minimal and is ignored.

7

www.manaraa.com

• Bearing Consistency. The RSSI from any WAP is assumed to have maxi-

mum relative intensity in the same direction as the WAP. In other words, the

bearing of the strongest RSSI is the direct bearing to the WAP. This assump-

tion ignores reflections that may cause the stronger RSSI readings from incorrect

bearings. In practice, a DWAP need only locate the bearing with the maximum

RSSI.

• Beacon Sufficiency. The captured packets in this research and experiments

are limited to beacon packets. This work is primarily interested in optimizing

the process of locating a static emitter’s bearing and location; this limitation

serves to simplify the experiment treatments, environment, data processing, and

data analysis. Future research could incorporate active listening, including all

possible signal localization sources.

1.7 Contributions

This thesis contributes to the body of DWAP research, specifically wireless net-

work localization. It presents a solution to an unavoidable problem when localizing

WAPs from a UAV using a directional antenna, and shows empirically that the pro-

posed method of directional radiolocation can predict emitter bearing for use on future

DWAPs.

8

www.manaraa.com

1.8 Thesis Overview

This thesis is arranged in six chapters. Chapter II presents fundamental concepts

of radiolocation as well as support applications of radiolocating UAVs and attack ap-

plication of DWAPs. Chapter III discusses prototype design and focuses on hardware

and software composition separately. Chapter IV presents the experiment method-

ology, including the standard parameters, metrics, and testing process. Chapter V

reviews the results of the collected data. Finally, Chapter VI summarizes the research

and discusses opportunities for extensions to this research.

9

www.manaraa.com

II. Background and Related Research

2.1 Overview

This chapter discusses the necessary radiolocation background details and surveys

applications of drone-based localization Wi-Fi systems. Relevant computer network

exploitation (CNE) and computer network attack (CNA) applications are also cov-

ered.

Section 2.2 discusses radio performance of omnidirectional and directional anten-

nae. Section 2.3 covers radiolocation principles, including basic properties such as

received signal strength indication (RSSI), time of arrival (TOA), and angle of arrival

(AOA). This section also covers relevant radiolocation principles such as triangula-

tion, trilateration, the weighted-centroid algorithm and probabilistic-based algorithms

used in predicting an emitter’s location. Section 2.4 discusses applications of UAV-

based radiolocation, such as wardroning, emergency response, and user localizing. It

also covers possible DWAP attack vectors. Section 2.5 reviews sparse data sets and

interpolation techniques that can fill in gaps in data sets.

2.2 Radio Performance Comparisons

One of the most significant characteristics of an antenna is its gain. Antenna gain

is measured in decibel-isotropic (dBi) and is a log ratio relative to the hypothetical

isotropic antenna, an antenna that uniformly distributes energy from a point in all di-

rections. Increases in dBi indicate that the energy is focused in a particular direction,

plane, or is otherwise not uniformly distributed.

10

www.manaraa.com

2.2.1 Omnidirectional Antennae.

Omnidirectional antennae used in Wi-Fi applications are typically small, quarter

wavelength dipole antennae with typical dBi values between 3 and 6 [2], although

values approaching and exceeding 12 dBi are claimed by some antenna manufacturers

[3]. These antennae have a disc radiation pattern expanding perpendicular to the

antenna in 360°. As the gain increases, the pattern stretches horizontally and flattens

vertically. Figure 1 shows the radiation pattern for a typical dipole antenna.

2.2.2 Directional Antennae.

Directional antennae have a directed radiation pattern, where the azimuth and

elevation planes are directed in some manner, such as shown in Figure 2. Directional

antennae are able to claim higher dBi because they are able to project electromagnetic

radiation much farther, and are likewise more sensitive to receiving signals from longer

distances.

Using a directional antenna provides two significant advantages for this research:

namely, increased range and directionality feedback.

2.3 Radiolocation

Radiolocation is the process of determining the position, velocity, and other char-

acteristics of an object by analyzing the propagation properties of radio waves [4].

This process includes, for example, measuring the reflected (backscattered) signals

of radar or locating an emitter by using multiples receivers to passively analyze that

emitter’s signals. This research is primarily concerned with the latter method, specif-

ically, determining the location of 802.11 emitters by passively analyzing their beacon

emissions, and any further use of the term radiolocation in this work is limited to this

application.

11

www.manaraa.com

(a) Dipole Azimuth Plane Pattern (b) Dipole Elevation Plane Pattern

Figure 1. Dipole Radiation Pattern [3]

12

www.manaraa.com

(a) Yagi Azimuth Plane Pattern (b) Yagi Elevation Plane Pattern

Figure 2. Yagi Radiation Pattern [5]

13

www.manaraa.com

The radiolocation methods discussed here are computationally simple, and ideal

for low-powered hardware, but are vulnerable to interference (e.g., attenuation, re-

flections, and multipath propagation) from objects in or around the signal path. In

other words, objects between the emitter and receiver, as well as reflective surfaces

surrounding them, reduce the accuracy of these methods. For airborne DWAPs, this

disadvantage is mitigated somewhat by the low reflectivity of the sky at the 2.4 GHz

and 5 GHz Wi-Fi frequencies.

There are many methods to perform radiolocation, however many of them require

multiple receivers or specialized antenna arrays. This section reviews fundamental

properties of radio communications, as well as advanced and straightforward radi-

olocation techniques. Each technique is broken down by the type of localization it

provides, such as bearing only, distance only, or location. Additionally, Wi-Fi specific

properties are discussed as well.

2.3.1 Received Signal Strength Indication.

RSSI is a measurement of the amount of energy that a receiving antenna observes.

RSSI is measured in decibel-milliwatts (dBms) and is very useful in this research as a

measurement point of reference. As dBm increases or decreases from zero, the relative

ratio that it measures grows exponentially.

The milliwatt (mW) is a measurement of received power and is directly related to

the metric RSSI by the equation:

mW = 10
dBm
10 (1)

The relationship between RSSI (in dBms) and mWs is shown in Figure 3, where linear

increases in dBms produces exponential increases in mWs, and a value of 0 dBm is

equivalent to 1 mW.

14

www.manaraa.com

0.0 0.2 0.4 0.6 0.8 1.0

Power (mW)

−80

−70

−60

−50

−40

−30

−20

−10

0
P

ow
er

(d
B

m
)

Figure 3. Decibel-Milliwatt to Milliwatt Scale

Distance. The signal’s RSSI can help determine the emitter’s distance if the

originating broadcast power is known. If the originator’s signal strength is known,

that value may be used with the observed RSSI to determine the attenuation of

the signal. Additionally, if the propagation characteristics of the medium between

the transmitter and the receiver are known, the distance between the emitter and

receiver may be determined.

Bearing. A directional antenna or omnidirectional antenna array may be used

to collect observations of RSSI that predict the bearing of the emitter. This research

uses a directional antenna to collect observations of RSSI as a function of bearing to

determine the best predicted WAP bearing; the technique is discussed at length in

Chapter IV.

15

www.manaraa.com

Location. If multiple receiver readings can be observed at different locations,

that data can be used to trilaterate the signals and predict the source signal location.

Because this approach requires knowledge of the source signal strength, it is of limited

use in this research that which assumes no transmission power data is encoded in the

packets.

2.3.2 Time of Arrival.

Time of arrival (TOA) is the measure of the time a signal is received. This

information can help determine emitter location under certain circumstances.

Distance. If the time of signal emission is known, TOA may use signal propa-

gation duration to determine emitter distance. TOA is the amount of time elapsed

between when the signal is sent and when it arrives at a receiver. The clocks in the

emitter and receiver must be synchronized, and the propagation characteristics of

the medium between the transmitter and the receiver must be known to accurately

estimate the emitter distance. Consider Figure 4, where an emitter broadcasts a

packet with an encoded timestamp synchronized to a common clock such as global

positioning system (GPS) satellites. A single receiver synchronized to the same clock

may use its known location and the TOA to determine the emitter’s distance.

Location. As with RSSI, measurements taken at multiple points may allow the

receiver to trilaterate the signal to predict the emitter’s location. If two receivers are

used, as shown in Figure 4, the location can also be determined much in the same

way as the distance.

16

www.manaraa.com

TOA requires prior knowledge of the time of signal transmission from the trans-

mitter and synchronized clocks. Furthermore, TOA is vulnerable to multipath errors;

reflections may interfere with the perceived signal time of arrival and hinder accurate

emitter location prediction.

2.4 ms

1.1 ms

Receiver Emitter Time of ArrivalSynchronized Clocks

Figure 4. Time of Arrival - One Receiver for Distance, Two Receivers for Location

2.3.3 Time Difference of Arrival.

Time difference of arrival (TDOA), or multilateration, differs significantly from

TOA, in that it does not require synchronized clocks between the receiver and emitter.

Instead, it relies on synchronized clocks between multiple receivers. Pairs of receivers

measure the duration that a signal takes to pass between them and may use this

information to determine emitter distance.

17

www.manaraa.com

Distance. A pair of synchronized receivers may determine a probable distance

to the emitter by comparing their relative distance from each other with the time and

RSSI differences from their observations.

Location. The observations of a single pair of receivers can be used to generate

a hyperbolic curve of possible emitter locations. More pairs of receivers may do the

same, generating additional hyperbolic curves. These curves intersect at the emitter’s

probable locations.

2.3.4 Angle of Arrival.

Observing the angle of a received signal, relative to some chosen reference angle

such as magnetic north, is an inexpensive and simple way to determine the direction

of an emitter.

Direction. The use of a directional antenna (or antenna array) allows for the

determination of the angle of the signal’s origin. A single directional antenna can

determine an emitter’s direction by rotating and observing the RSSI as antenna direc-

tion changes - this is the method developed in this research to predict WAP bearings.

A specialized array of antennae may also determine signal direction by observing

differences in RSSI over many small, discrete antennae.

Location. Multiple measures of angle of arrival (AOA) may be collected at

different locations and combined to predict the emitter location using triangulation.

A single receiver may also be used, if the emitter is stationary, to predict the emitter

location by determining the AOA at different coordinates. Furthermore, multiple

18

www.manaraa.com

synchronized receivers may take measurements over time to track moving emitters.

Figure 5 demonstrates this principle; the emitter in the center is observed by three

receivers. Each determines an AOA, and triangulation is trivial using the combined

data to determine the emitter’s location.

As with using AOA to determine an emitters direction, this research uses AOA

readings from multiple positions to predict stationary source signal locations.

70° 280°

160°

Receiver Emitter AOA Sharing Channel Angle of Arrival

Figure 5. Angle of Arrival - Multiple Receivers Determine Emitter Location

More advanced techniques use some or none of the above signal attributes to

improve the prediction accuracy of emitter location. Two of the most used techniques

[6] are weighted-centroid-based algorithms and probabilistic-based algorithms.

19

www.manaraa.com

2.3.5 Triangulation.

At its core, triangulation is the use of angles to determine an object’s location.

If two observers with a known position are observing an object with an unknown

position, the two observers can share their observation angles and determine the

object’s location by forming a triangle with the angles and their two known positions.

Triangulation may also be performed by a single observer making multiple obser-

vations of a single stationary object. This technique is used later in this research to

derive an emitter’s location coordinates.

2.3.6 Trilateration.

Trilateration may be used to determine an object’s location by measuring the

distance to an object. Two observers may determine an object’s distance from them

without knowing the object’s angle (such as when using an omnidirectional antenna

and deriving a distance from RSSI). This distance may be considered a radius for a

circle, or sphere if the object is not restricted to a plane. Two observers then form two

circles which intersects at two points, either of which may be the object’s location.

A third observer may further narrow the object’s location to a single area or point.

This technique is effective at locating emitters within a margin of error as low

as 30 m [7], however lower margins of error are difficult when using RSSI to deter-

mine distance due to low attenuation over clear space, and high attenuation through

physical materials.

20

www.manaraa.com

2.3.7 Weighted-Centroid-Based Algorithms.

Weighted-centroid-based algorithms estimate an emitter’s location by calculating

the arithmetic mean of each observation. The accuracy is improved by weighting each

observation by the RSSI that is observed for that value. More distant observations

(with a lower RSSI) do, therefore, affect the predicted location less than an observa-

tion that is closer (with a higher RSSI). This effect is particularly strong when using

mW instead of dBm, since a linear reduction of dBm is equivalent to an exponential

reduction in mW (see Figure 3).

Figure 6a demonstrates this concept with four connected receivers that measure

RSSI from a single emitter. The receivers share their observations r1, r2, r3, and r4

and locate the emitter. Figure 6b shows an alternative approach that uses a single

mobile receiver to make multiple observations RSSI; if the emitter remains stationary,

a single mobile receiver may locate an emitter.

2.3.8 Probabilistic-Based Algorithms.

A probabilistic-based algorithm uses machine learning that avoids traditional ge-

ometric radiolocation techniques (i.e., TOA and AOA) [8]. Instead, it employs large

volumes of collected data, such as position, emitters observed, and RSSI values for

each emitter, to tune a machine learning algorithm. The resultant algorithm produces

a map that is considerably more accurate than weighted-centroid-based algorithms

[6]. The error function of the machine learning algorithm optimizes the coefficients

of the prediction algorithm based on the training set data. This algorithm can be

optimized by adjusting the amount of training data and variables. This approach is

also known as fingerprinting, as the prior data is considered a device’s “fingerprint.”

21

www.manaraa.com

r1

Receiver Emitter RSSICommunication Channel

r2
r3

r4

(a) Multiple Receivers

r1

Reciever Emitter RSSI

r2
r3

r4

(b) Single Receiver

Figure 6. Weighted-Centroid Localization Algorithm

22

www.manaraa.com

2.3.9 Wi-Fi Principles.

Wi-Fi networks are radio networks, and therefore radiolocation of a Wi-Fi emitter

can be performed by using the same principles discussed above. Additionally, Wi-Fi

packets may contain information that aid in determining its location. The BSSID is

a critical metric in this research.

BSSID. This 48-bit number is embedded in every packet transmitted by a WAP

and uniquely identifies it. In an environment with many emitters, this serves to isolate

signals from a particular target from neighboring WAPs. The BSSID is also used by

nodes communicating with a WAP to identify that particular WAP as the recipient

of the packet.

Channel. The channel in use by the WAP is embedded into the beacons it

broadcasts. This is important, since relying strictly on the receiver to determine the

channel is problematic; the channels defined by 802.11 specifications are close enough

that traffic on a particular channel may be observed on adjacent channels and the

receiver may attribute the wrong channel to a particular WAP. Knowing a WAP’s

true channel is useful for building a complete data set for bearing and prediction

location.

Many commercial Wi-Fi network interface cards can be put into monitor mode, a

mode of operation where the network interface listens to any valid signals it receives,

irrespective of who the traffic is intended for. By hopping channels, a monitor mode

network interface may observe traffic on all channels, although it may only monitor

a single channel at a time. This mode is used to scan for nearby WAPs, record key

exchanges, and eavesdrop on unencrypted communications.

23

www.manaraa.com

On some devices, monitor mode also adds a special layer to captured data called

the Radio Tap layer. This layer contains physical attributes of the received radio

signal, including RSSI.

2.4 Radiolocation Applications

The research developed here can be applied in numerous ways, including in the

following radiolocation applications.

2.4.1 Emergency Response.

Numerous applications of using a Wi-Fi equipped UAV in emergency response

have been proposed [9, 10, 11]. Most smart-phones regularly emit Wi-Fi probe re-

quests, and since smartphone adoption is nearing saturation, research has focused on

localizing those probe request using a “wardroning” approach. Research has shown

that Wi-Fi enabled phones can be detected from up to 200 meters away [10]. By using

optimized flight paths, drones can maximize the probability of detecting an emitting

phone; once detected, they may adjust the flight path to hone in on the emitting

source. These platforms use omnidirectional antennae that limit the detection range

and require more active flying, which increases the amount of time needed before the

drone is within range of a potential search and rescue candidate.

2.4.2 Wardriving.

Wardriving is the act of locating WAPs by continuously collecting Wi-Fi beacons

and mapping the point of detection and service set identifier (SSID) [12]. The term

Wardriving developed from wardialing, the act of dialing random or consecutive phone

numbers in search of modems. Wardriving began in 2000 and grew to be quite

popular among amateur technology hobbyists in the following years [13]. Wardriving

24

www.manaraa.com

has been credited with increasing the security of Wi-Fi access points by exposing the

great number and locations that were originally unsecured. The location of Wi-Fi

access points and their security level is of concern to network defenders responsible

for conducting rogue WAP audits, as well as those with malicious intent seeking

unsecured networks or targeting specific individuals and organizations for network

attacks.

Even though wardriving has waned in recent years [14], as shown in Figure 7, there

is still a need for network administrators to accurately and quickly perform a wireless

site survey. In like manner, malicious attackers and penetration testers continue

to research better ways to map Wi-Fi access points, including using transportation

other than cars, such as walking, bicycles, trains, and more recently, drones. Figure 8

demonstrates the results of wardriving across the United States, and Figure 9 shows

a city wardriving map where green, white, and red symbols indicate unsecured, WEP

encrypted, and WPA protected WAPs respectively.

Prediction Accuracy. The accuracy of Wardriving has typically been very

poor. Most wardriving systems in use consist of regularly polling a GPS device while

also recording which Wi-Fi access points are detected at that time. The simplest

method of localizing uses the GPS coordinates at the time of detection. A slightly

more advanced method uses location averaging when the same BSSID is detected

at multiple locations [15], and weighted-centroid averaging would likely give an even

better estimate. Research has shown progress in implementing probabilistic-based

algorithms that show a significant increase in prediction accuracy [6]. This perfor-

mance, however, is limited by the range and non-directionality of omnidirectional

antennae.

25

www.manaraa.com

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

0

20

40

60

80

100
In

te
re

st

Figure 7. Wardriving Interest Relative to Peak in 2004 [14]

2.4.3 Computer Network Operations.

According to Bruce Schneier, Computer network operations (CNO) are both com-

puter network exploitation (CNE) and computer network attack (CNA) operations.

CNE is any action taken to gain unauthorized access to networked systems to gain

information, while CNA is the act of attacking a network in an attempt to disrupt,

deny, degrade, or destroy information or connected systems [18].

Radiolocation assists in both CNE and CNA in cases where the attack is wireless

and the locations of possible points of ingress (WAPs) are not known. In taking CNE

and CNA actions, maximum standoff distance is typically desired, whether operating

from a DWAP or not, to reduce exposing the attacker’s presence to the target. Once

a target has been identified, the attack may commence using the same hardware used

to locate the target WAP to connect and conduct CNO.

26

www.manaraa.com

Figure 8. Map of Wi-Fi Access Points from Wardriving [16]

Figure 9. Detailed Map of Wi-Fi Access Points from Wardriving [17]

27

www.manaraa.com

Man-in-the-Middle. Products like the Wi-Fi Pineapple demonstrate the attack

surface any Wi-Fi-using organization presents to attackers [19]. The Wi-Fi Pineapple

is capable of an attack that maliciously responds to client probe requests and bridges

target client connections to the Internet to serve as a transparent proxy. As powerful

as the Wi-Fi Pineapple attack suite is, its utility and area of effect increases using

directional antennae; an attacker may focus the Wi-Fi Pineapple on a specific building

or perform attacks from a greater distance.

Denial of Service. A directional antenna is ideal for a denial of service attack

such as jamming. An attacker may either continually transmit interference signals

(active jamming) or exploit weaknesses in the protocol (intelligent jamming). Con-

trasting with active jamming, intelligent jamming allow an attacker to produce denial

of service effects without using large amounts of power [20].

User Tracking. Many smartphones, among other Wi-Fi enabled devices, con-

tinually broadcast probe requests, releasing the SSID and BSSID of the WAP they

have connected to in the past, as well as their own globally unique MAC address.

This information can reveal private details about a person. Personal identifying in-

formation can be gleaned from smartphone probe requests, including home address

and social connections [21]. Research has also shown that building occupancy may

be determined, and users may be located in search and rescue scenarios, by moni-

toring probe requests from the users’ smartphones [22]. Also, commercial products

already exploit this vulnerability to track consumers [23]. A directional antenna can

significantly increase the maximum distance that user tracking could be performed.

28

www.manaraa.com

2.5 Sparse Data Interpolation

Sparse data sets are sets of data that are not continuous, or when discrete, do

not contain values at regular intervals. An example of a sparse data set is one that

is created by a sensor that records readings at irregular intervals. Another relevant

example is RSSI readings taken as a function of time or position, where the emitting

signal was occasionally not strong enough to be detected by the receiver. Sparse data

sets have gaps in the data that may need to be filled in by making an educated guess.

The process of filling in the gaps is called interpolation.

There are many methods of interpolation, usually suited for specialized appli-

cations. For example, polynomial interpolation is useful for deriving a polynomial

function from a series of points where the resultant function passes through all the

points.

A more advanced category of interpolation techniques is spline interpolation,

where each interval between pairs of data points is treated as a low-degree polynomial

that smoothly transits between each interval. This has the advantage over high-degree

polynomial interpolation because the low-degree polynomials are less computationally

intensive to derive and evaluate.

Many more advanced interpolation techniques exist, including very specialized

methods. Large libraries of interpolation techniques are a part of most data anal-

ysis packages, and are used extensively in this research to determine the optimal

interpolation technique for the sparse data sets produced from these experiments.

Section 5.4.1 describes interpolation techniques that are used in this research to

predict WAP bearings and locations, and Figure 21 illustrates interpolation of sparse

data sets using different techniques.

29

www.manaraa.com

2.6 Summary

This chapter covers the relevant differences between directional and omnidirec-

tional antennae, as well as necessary concepts and terminology for radiolocation. It

also discusses radiolocation applications, including roles such as emergency response,

and offensive roles such as wardriving and CNO. Finally, sparse data sets and inter-

polation techniques are discussed.

30

www.manaraa.com

III. Prototype Design

3.1 Overview

This research presents data and analysis of radiolocation using a directional an-

tenna and techniques described in Chapter II. This chapter describes the design and

construction of both hardware and software of the prototype. The prototype is de-

signed with two primary goals in mind:

• Low Cost. A significant consideration for this research is the potential for

low-cost applications. Prototype hardware is limited to commercial commodity

hardware, and selection of the software framework and any libraries imported

into the software project is limited to free OSS.

• Low Weight. This research intends to explore ways to quickly and accurately

locate distant Wi-Fi access points from a UAV platform. Prototype hardware

is selected that mimics the capabilities of a drone platform, namely low weight

and antenna rotation control. Maximum prototype payload capacity is limited

to 500 g, a reasonable payload for medium to large consumer UAVs [24].

Section 3.2 provides an overview of each hardware component with detailed tech-

nical specifications. Section 3.3 reviews the software implementation of the prototype

and includes a detailed review of each component of the localizer framework.

31

www.manaraa.com

3.2 Prototype Hardware

The hardware is limited to commercially-available, inexpensive products that are

light enough to be carried by a consumer-grade UAV. The only prototype hardware

expected to be migrated to a UAV prototype is the computer, computer power source,

and antenna. The other components have roles that are filled by the UAV navigation

computer and the UAV itself.

The hardware is reviewed in detail here and summarized in Tables 1 and 2. A

schematic of the hardware is shown in Figure 10.

Computer. A Raspberry Pi 3 Model B is an ideal prototype computer for

this application. Its selling price of $35 and 45 g weight fit within the project goals

of low cost and weight. The Pi’s 4-core architecture, the ready availability of Linux

distributions and pre-compiled applications, and abundant general purpose input and

output (GPIO) pins for controlling additional hardware make it a flexible and capable

platform.

Computer Power Source. The Raspberry Pi draws a maximum current of

712 mA during the experiments detailed in Chapter IV. The selected $20 Letv LeUPB-

211D Super Power Bank provides nearly 9.46 Ah (at a maximum observed voltage of

5.1 V) and is sufficient to power the Raspberry Pi for 13.3 h (9.46Ah
712mA

) and longer than

any current commercial drone can remain airborne. At 276 g, this is the heaviest UAV

component in the prototype. A smaller battery with, for example, half the capacity

would be sufficient, and significant weight may be saved by selecting one that is

matched to the flight time of the device. This power source may be eliminated entirely

if the UAV power supply provides capabilities to power other devices; however, flight

time would be reduced slightly due to the increased power load from the Raspberry

Pi.

32

www.manaraa.com

Antenna. Many variations of directional antennae exist, nevertheless, the

best candidate for this research that is adequately small, light, inexpensive, and

commercially-available at the time of research is the Danets USB-Yagi TurboTenna

yagi antenna. It weighs 137 g and measures 31.5 cm long, making it light and small

enough to be carried by consumer-grade UAVs. It presents a cross section that is

relatively small, ideal for a UAV in a windy environment and is visible in Figures 11

and 12.

Signal Receiver. The DNX10NH-HP USB Wi-Fi network interface reliably

enters monitor mode and captures packets and compares well to the popular Alfa

AWUS036H USB wireless adapter commonly used for wireless CNO. The DNX10NH-

HP entered monitor mode and captured packets with zero loss throughout all the

experiments. Its 35 g weight keeps the total weight within the desired maximum of

500 g.

Global Positioning System Module. The GPS module GlobalSat BU-353S4

is inexpensive and representative of a cheap, light, commercial GPS receiver. This

module contains a SiRF Star IV GPS chipset that provides positional accuracy of

less than 2.5 m. A GPS module may not be necessary on a UAV prototype, which

usually have on-board GPS.

33

www.manaraa.com

Antenna Motor. A motor is necessary to simulate the antenna rotation that a

UAV platform may easily accomplish by its airborne mobility, or by being equipped

with a gimbal that could rotate. To accurately determine the bearing at each phase of

the capture, a stepper motor is used. The motor selected is a 2.0 A bipolar motor with

a 1.8° step angle that provides 0.59 Nm of torque. This motor performed accurately

and reliably during all experiments, rotating thousands of times without losing steps

or becoming disoriented.

Motor Driver. A stepper motor driver is necessary to ensure smooth motor

movement using microstepping; a purpose-built driver simplifies the necessary code to

achieve microstepping and smooths antenna rotation. The motor controller selected

is the MYSWEETY TB6600 Stepper Motor Driver, reportedly capable of driving 4 A

from 9 V to 42 V. With microstepping the motor can rotate with a precision of 6400

steps per rotation.

To drive the motor, the Raspberry Pi simply sends a signal from its GPIO pins

to the pulse (PUL) driver input. The Raspberry Pi does not have a real-time oper-

ating system; if the motor driver is controlled directly by GPIO, the signaling may

be interrupted by operating system preemption. To ensure that this pulse signal

is not interrupted or preempted by the Raspberry Pi operating system, hardware-

timed pulse width modulation (PWM) signals are used to ensure that even when the

Raspberry Pi’s processor is under heavy load, the motor movement remains smooth.

34

www.manaraa.com

Motor Power Source. Due to the length of the captures and the power required

to drive the stepper motor (peak 2 A at 13 V), the author’s truck is an acceptable

choice for the motor power source. The truck’s alternator provided more than 13 V

and a stable platform for the prototype, which also benefited from the unobstructed

position that the elevation provided. Figure 11 shows the prototype fixed atop the

vehicle during data capture.

Miscellaneous Components. Other hardware used to build the prototype

include MakerBeam t-slot aluminum extrusions for the frame, a breadboard, a ribbon

cable, a GPIO breakout shield to simplify stepper motor control, and a rectangular

Plexiglas piece as the prototybe base. Other items used in the construction of the

prototype include a NEMA 17 mounting bracket and a 5 mm coupler.

Hardware Cost and Weight. An airborne prototype does not require all

of the hardware listed in Table 1; for example, a motor for rotating the antenna is

unnecessary based on an assumed quadrocopter or similar design that is capable of

rotation. The components that are required for an airborne prototype are listed in

Table 2 with their respective cost and weight. As shown, the cost of hardware is low,

and the cumulative weight is less than the proposed maximum of 500 g.

35

www.manaraa.com

Figure 10. Prototype Schematic

36

www.manaraa.com

Table 1. Prototype Hardware Overview

Item Model / Version

Processor Raspberry Pi 3 Model B V1.2 - Raspbian Stretch (4.9)
– Power Letv LeUPB-211D 13.4 Ah (3.64 V)
Antenna Danets USB-Yagi TurboTenna
Receiver USB WiFi Interface - DNX10NH-HP
GPS Module GlobalSat BU-353S4
Motor NEMA 17 2.0 A Bipolar Stepper Motor
Motor Driver MySweety Microstep Stepper Driver - TB6600
– Power Alternator-Fed Battery (Ranger)
Structure MakerBeam 10mm Aluminum Extrusions
Motor Mount NEMA 17 Steel L Bracket
Motor/Antenna Coupler Aluminum Flex Shaft 5mm to 5mm coupler
Antenna Mast 5mm Steel Bolt
GPIO Components Standard Breadboard, GPIO Breakout, Ribbon Cable

Table 2. Airborne Prototype Hardware Cost and Weight

Item Price Weight

Processor $35 45 g
– Power $20 276 g
Antenna $113 137 g
Receiver $0 (incl. with antenna) 35 g
Totals $168 493 g

37

www.manaraa.com

Figure 11. Experiment Platform and Power Source

38

www.manaraa.com

Figure 12. Assembled Prototype

39

www.manaraa.com

3.3 Prototype Software

This research requires specialized software to manage and synchronize the differ-

ent prototype components. The resulting software is localizer, a framework written

in Python 3.5.3 and composed of modules organized by their respective capture func-

tions.

• Interactive Shell. A command line interface is the central component of

localizer. The interactive shell allows a user to set parameters for capture,

such as degrees of rotation, rotation speed, channel hop rate, and other pa-

rameters for managing a live capture. Once configured, the user may initiate

the capture, which sets in motion the orchestrated efforts of several threads

to synchronously capture data at the specified parameters. After the capture,

the shell displays its best guess as to the bearing of all detected BSSIDs. The

user has the option to conduct a focused capture, which focuses the sweep on a

particular range and a channel specific to the targeted BSSID.

• Batch Capture. The shell also contains a subroutine for batch processing

that reads in capture configuration files. These may have a variable number

of captures defined within, as well as a passes number set. The passes number

signifies how many times each capture should be repeated. Batch capture is the

primary mode for capturing the data that is analyzed in this research.

• Batch Processing. Finally, localizer has a batch processing command-line

feature that walks a designated directory and all subdirectories, searching for

unprocessed data sets. If found, it uses multiprocessing to process the data for

later analysis.

40

www.manaraa.com

localizer uses Python 3.5.3, chosen for its flexibility and cross-platform charac-

teristics, as well as the ease of multithreading and multiprocessing. Multithreading is

used in the capture process to synchronize many asynchronous processes, while multi-

processing is used during processing of the captured data. The project dependencies

used in localizer are listed in Table 3 with their respective version number and the

function they provide to the framework.

Table 3. localizer Dependencies

Package Version Function

gpsd 3.16-4 Provide GPS data from GPS module
gpspipe 3.16-4 Log GPS data to disk
iwconfig 30 Get Wi-Fi adapter settings, set monitor mode/channel
iwlist 30 Get Wi-Fi interface current channel
ifconfig 2.10-alpha Prepare Wi-Fi interface for monitor mode
dumpcap 2.2.6 Capture packets from Wi-Fi interface
pigpio 64 Provide reliable hardware PWM to stepper motor

3.4 Modules

The localizer project is organized into different modules based on their unique

role in the data acquisition process. The localizer manual is provided in Ap-

pendix A and the complete project source code is given in Appendix B. This section

reviews the most significant modules and includes references to the relevant source

code.

3.4.1 shell.py.

Reference Appendix B.2.3 for localizer/shell.py source code.

41

www.manaraa.com

This module provides the first two roles, namely interactive capture and batch

capture by making extensive use of subclassing the Python Cmd class. As demon-

strated in the manual, many commands are available to set up capture parameters,

view the current state, and execute a capture. The batch capture mode enables

*-capture.conf file import and batch capture.

3.4.2 capture.py.

Reference Appendix B.3.1 for localizer/capture.py source code.

This module performs the bulk of all capture thread synchronization. Each thread

and its respective role in the data capture process is detailed in Table 4, whereas

Table 5 lists the capture output of each thread.

The function capture manages each thread in the following sequence:

1. Initialize Environment. Set up capture paths and filenames based on pro-

vided parameters. Create the event flags used later for thread synchronization

2. Set Up Threads. Initialize the four required capture threads, CaptureThread,

GPSThread, ChannelThread, and AntennaThread. Start each thread to give

each time to perform initialization functions. Each thread awaits an event flag

to signal when it should begin its capture routine.

3. Wait for Precise GPS Fix. Poll the GPS provider until a precise location

is indicated.

4. Wait for CaptureThread. CaptureThread raises a synchronization flag to

indicate that it has successfully started capturing packets. All other threads

are waiting on this flag, and start their respective captures once it is raised.

42

www.manaraa.com

Table 4. Capture Thread Roles

Thread File Role

CaptureThread capture.py Start dumpcap, wait for feedback, trigger other threads
GPSThread gps.py Capture GPS NMEA data for the capture duration
ChannelThread interface.py Change monitored channel at a given hop rate
AntennaThread antenna.py Rotate antenna at a given rate and degrees

Table 5. Capture Thread Outputs

Thread Capture Output

CaptureThread capture start & stop times, <timestamp>.pcapng
GPSThread average coordinate, <timestamp>.nmea, <timestamp>-gps.csv
ChannelHopper none
AntennaThread capture start & stop times

5. Wait for Other Threads. Wait for the specified capture duration while all

threads perform their respective function as described in Table 4. The capture

duration is provided interactively by an operator or by a batch capture script.

6. Collect Results. After the capture duration has elapsed, collect the results

from each thread from its respective queue. The output from each thread is

detailed in Table 5.

7. Write Metadata. Write the capture details to <timestamp>-capture.csv.

This file is comprised of important meta data as described in Table 6 and is

used during capture processing.

8. Optional: Predict WAP Bearings. If directed, capture processes the col-

lected data by grouping beacons from the same BSSID into discrete series. Each

series is interpolated using an optimal interpolation method, and a prediction

is made for the bearing to the emitter. If this happens during an interactive

capture, the enumerated BSSID are displayed and the operator may select one

43

www.manaraa.com

Table 6. Metadata Fields

Field Type Description

name string The capture name; if none is given, timestamp of the capture
pass int The capture pass number
path string The path where capture data is recorded
pcap string The file name of the packet capture
nmea string The file name of the raw NMEA capture
coords string The file name of the logged GPS coordinates
iface string The capture interface
duration int The number of seconds to capture data
hop int double The interval in seconds between channel hops
pos lat double The mean latitude of the capture
pos lon double The mean longitude of the capture
start double The timestamp of when the capture began
end double The timestamp of when the capture concluded
degrees int The number of degrees over which the capture is conducted
bearing int The initial bearing of the capture
focused string The BSSID of the targeted WAP if capture is focused

to target with a focused capture by issuing the command > capture followed

by the specified BSSID number. Batch captures may be configured to automati-

cally perform focused captures for each detected BSSID or specified white-listed

BSSIDs.

9. Clean up Environment. Allow each thread to clean up and join the main

thread.

CaptureThread. This class extends the Python threading.Thread class and

spawns an instance of dumpcap, a part of the tshark package which is used in Wire-

shark packet capturing. dumpcap is used because of its low resource requirements. Be-

cause dumpcap is relatively slow to start capturing packets, the other capture threads

wait for a flag from CaptureThread indicating that dumpcap has successfully begun

capturing packets.

44

www.manaraa.com

3.4.3 gps.py.

Reference Appendix B.3.3 for localizer/gps.py source code.

This module exclusively deals with GPS initialization and capture.

GPSThread. When triggered by CaptureThread, this thread performs two

functions:

• Poll for GPS Data. The thread manually polls the system GPS provider

(gpsd) for GPS data every 1 s, the maximum rate that the prototype GPS

module supplies updated GPS readings. The results are written to the file

<timestamp>-gps.csv.

• Spawn gpspipe. In addition to polling gpsd, the thread uses gpspipe to pipe

raw NMEA GPS data from gpsd to a file ending in <timestamp>.nmea.

3.4.4 interface.py.

Reference Appendix B.3.4 for localizer/interface.py source code.

The wifi module manages the Wi-Fi radio, including entering and exiting monitor

mode, getting wireless adapter information, and setting the interface channel.

ChannelThread. The wifi module has the ChannelThread class, which, when

triggered by CaptureThread, manages cycling through channels during a wide cap-

ture, or holding the channel steady during a focused capture. The interval between

channel hops, as well as the hop pattern, is configurable, and optimal values are

discussed in Section 5.3.

3.4.5 antenna.py.

Reference Appendix B.3.2 for localizer/antenna.py source code.

45

www.manaraa.com

This module has the important duty of managing the stepper motor, and by

extension, antenna bearing. antenna.py starts with global variables and initialization

code that ensures the right system programs are available, such as pigpiod, the

Python and Raspberry Pi library that provides hardware-based PWM pulses for the

stepper motor.

AntennaThread. Most antenna functionality is encapsulated in AntennaThread.

When initialized, this class resets the antenna to a specified bearing. When triggered

by CaptureThread, AntennaThread rotates the antenna to a given bearing at a spec-

ified rotation rate. Optionally, if provided a reset bearing, the thread resets the

antenna once primary rotation is complete.

Because of the wire from the collector (Wi-Fi adapter) to the processor (Raspberry

Pi), this class has the responsibility to rotate the antenna given arbitrary rotation

angles while ensuring that the antenna does not rotate too far in either direction. The

class function determine best path takes a new bearing and the proposed degrees

of travel and determines the ideal path. If possible, this function returns the shortest

path to the new bearing while ensuring that the rotation avoids tangling the interface

cable (e.g., rotating too far in the same direction causes the cable to bind up the

antenna and miss steps or stop rotating entirely). A UAV prototype does not suffer

from this limitation, unless a gimbal is used, because the antenna does not rotate

independently of the UAV.

Once an ideal travel path has been determined, the rotate function generates

pulse waves to be provided to pigpiod, which translates them into PWM pulses that

drive the motor at the desired rate and to the desired distance. Acceleration and

deceleration of the antenna when it starts and stops is included in each wave to help

ensure accurate antenna rotation.

46

www.manaraa.com

Reset Rate. When resetting the antenna, a special antenna reset rate is used.

When resetting over long distances, a high speed is appropriate, however rotating the

prototype at short distances and high speeds causes the stepper motor to miss steps,

invalidating all data that is captured afterward. To compensate for this, a smoothing

function based on a symmetric sigmoid is used to ensure no missed steps would occur.

The sigmoid reset rate problem is discussed further in Section 5.2.2.

3.4.6 process.py.

Reference Appendix B.3.5 for localizer/process.py source code.

Capture data in the form of metadata, GPS positions, and packet captures must

be processed in order for it be readily analyzed or to facilitate a prediction as to the

bearing of detected emitters.

Except for several helper utilities, the process.py module has only two primary

functions:

• process capture. This function accepts a path to a capture meta file, as

described in Section 3.4.2 and detailed in Table 6. The meta file is ingested,

along with the capture files described in Table 5. Each packet that is captured

is parsed for important information such as BSSID, SSID, RSSI, and WAP

security details. Antenna bearing is derived from the packet timestamp and the

data provided by the AntennaThread timing results. The processed results are

tabulated and written to disk as a <timestamp>-results.csv file for future

analysis and optionally used directly to predict the bearings of any BSSIDs

detected during the capture.

47

www.manaraa.com

• process directory. This function walks through a given directory and all

of children directories identifying and collecting unprocessed capture sets. It

sends the discovered unprocessed capture sets to a multiprocessing pool that

processes each capture in parallel.

3.4.7 locate.py.

Reference Appendix B.2.2 for localizer/locate.py source code.

This small module provides an important function to the localizer project of

data interpolation. Interpolation, which is discussed further in Chapter V, can reduce

the localizing error by over 30° in some cases. In short, this module takes sparse data

sets of beacon intensity as a function of bearing and fills the missing data using

a variety of techniques. The most effective interpolation methods are discussed in

Chapter V.

3.5 Summary

The hardware described in this chapter meets the requirements of low weight and

cost, while the software meets the requirements that it be open source and capable of

performing the functions necessary to gather the data as outlined in Section 3.4.2.

48

www.manaraa.com

IV. Methodology

4.1 Overview

This research proposes a unique method of locating Wi-Fi emitters from an UAV

using a directional antenna. This chapter describes the experiment environment and

identifies the metrics and parameters necessary to measure the performance of the

prototype. This chapter covers experimental treatments that deliver data for analysis

and parameter discovery.

4.2 System Under Test

Figure 13 displays the System Under Test (SUT) and Component Under Test

(CUT) diagrams. The workload factors consist of wide capture parameters and fo-

cused capture parameters, described in Section 4.4. The system parameters, com-

prised of computing and prototype parameters (covered in Section 3.2) and constant

parameters (covered in Section 4.4 and Table 8) are held constant throughout all

experiments. The system metrics are detailed in Section 4.5 and shown in Table 9.

4.3 Experiment Objectives

To test the research hypothesis as discussed in Section 1.4, this research seeks

to discover optimal values for the parameters that are identified in Section 4.4 and

that maximize the performance of the proposed localization method. These optimal

parameters are discovered through multiple experiments described in this chapter and

analysis covered in Chapter V.

This research also seeks to discover whether accurate WAP coordinates may be

discovered by repeating the wide capture process from multiple locations. In pursuit

of this end, data is gathered from multiple positions.

49

www.manaraa.com

Figure 13. System Under Test and Component Under Test

50

www.manaraa.com

4.4 Parameters

The parameters identified in Figure 13 are outlined in this section and summarized

in Table 7.

1. Rotation Rate (RR). Because most captures are assumed to be a single

rotation, and because captures faster than one revolution per second are im-

practical, this parameter is displayed as seconds per revolution instead of its

inverse.

These treatments prioritized gathering data for analysis and measuring bear-

ing error (BE) and location error (LE). For this purpose, rotation rate (RR) is

optimized to find the highest beacons per second (BPS).

2. Focused Capture Rotation Rate (FCRR). Like RR, focused capture ro-

tation rate (FCRR) is the rotation rate for a focused capture where the channel

is fixed. This thesis hypothesizes that keeping the channel fixed during a cap-

ture reduces missed beacons, increasing observed beacons and enabling accurate

high-speed captures.

3. Channel Hop Interval (CHI). Channel hop interval (CHI) is the amount of

time in time units (TUs) that the receiving Wi-Fi adapter waits on a channel

in monitor mode before moving on to the next channel.

In an attempt to avoid issues with certain WAPs in that a chosen CHI

“misses” the WAP’s beacon (or some subset of them) because of unintended

synchronization with the WAP beacon emissions, CHI values are defined by the

following set notation:

{x εZ≥100 | gcd(x, 100) = 1} (2)

51

www.manaraa.com

where x is an element of the integer set (Z) greater than 100 and where the

greatest common denominator (gcd) of x and 100 is 1.

In other words, the hop interval may only be a relatively prime number of

TUs that is at least 100 TU, the standard beacon emission rate. Appendix C.2

contains the script used to generate possible coprime hop intervals.

4. Channel Hop Distance (CHD). Channel hop distance (CHD) is the number

of channels to move when hopping. For example, consider the standard 802.11b

and 802.11g channels in the United States of 1-11. Starting at 1, a channel

hop distance of 1 would step through each channel sequentially. A channel hop

distance of 2 would step through every other channel in the sequence of 1,3,5,

and so on.

The channels are close enough that it is common for traffic transmitted

on a particular channel to be observable on adjacent channels. An optimal

CHD could potentially increase the number of beacons, improving bearing and

location predictions.

5. Focused Capture Width (FCW). Conducting an optimal focused capture

requires a focused capture width (FCW) that provides the ideal trade off be-

tween BE and detection time (DT).

Two parameters that are held constant for the duration of the experiment are

capture width (CW) and the initial bearing (IB), representing the amount of antenna

rotation for a wide capture and the starting bearing, respectively. The held-constant

value of CW represents the assumption that a wide scan always rotates 360° to locate

WAPs in every direction, and the held-constant value of initial bearing made running

experiments consistent and verifiable throughout by comparing the actual antenna

bearing with the reported antenna bearing. In practice, before each capture, the

52

www.manaraa.com

antenna is directed to 0°, magnetic North. At the end of the capture, the antenna

bearing is compared to this initial value. If it differed from 0° the capture is inval-

idated. The localizer framework is verified to maintain an accurate bearing after

more than 24 hours of continuous, randomized captures. The parameters CW and

IB are summarized in Table 8.

4.5 Metrics

The goal of this research is to determine WAP bearings and locations. With this

goal in mind, the performance of the system can be measured directly by the error

in producing a bearing and a location. Ancillary metrics are listed first, followed by

the two primary metrics which are summarized in Table 9.

1. Received Signal Strength Indication (RSSI). This metric is introduced in

Section 2.3.1. RSSI is used heavily in this experiment to measure the received

strength of the beacon.

2. Milliwatt (mW). In this research, milliwatt is a more useful measurement

metric than RSSI for localizing emitters, as shown in Section 5.4.

3. Beacons per Second (BPS). All things equal, more beacons provide more

data to use in localizing WAP emitters, and as shown in Chapter V, more bea-

cons improved localization performance significantly. One of the major param-

eters in this experiment is capture duration, or speed of the antenna rotation.

Beacons per second is an ideal metric to determine optimal rotation speed, and

serves to identify optimal channel hopping rate and channel hopping distance.

The beacons per second metric may be expressed as a positive integer, BPS,

which is the ratio:

BPS =
BO

CD
(3)

53

www.manaraa.com

Table 7. Experiment Parameters

Parameter Units Range Proposed Values

Rotation rate (RR) s
rev

0 to ∞ {5, 10, 15, 20, 25, 30}
Focused capture rotation rate (FCRR) s

rev
0 to ∞ {5, 6 . . . 12, 13}

Channel hop interval (CHI) TU 100 to ∞ {109, 119, 129 . . . 199}
Channel hop distance (CHD) ch 0 to ∞ {1, 2, 3, 4, 5}
Focused capture width (FCW) ° 0 to 360 5 - 360

Table 8. Held-Constant Parameters

Parameter Units Held-Constant Value

Capture width (CW) degrees 360
Initial bearing (IB) degrees 0

where beacons observed (BO) represents the number of beacons observed for a

particular capture and capture duration (CD) represents the time spent con-

ducting the capture, rotating the antenna and capturing beacons.

BPSw and BPSf. In reality, there are two measurements for BPS - one for

wide captures and another for focused captures. BPS may then be designated as

BPSw or BPSf respectively. BPS without subscript may be assumed to be used

for wide captures with channel hopping, BPSw. BPS is measured in beacons

per second (b
s
).

The standard beacon rate is ten beacons per time unit. In wide capture

mode, the prototype only monitors a single channel at a time and each WAP is

on a distinct channel. Ignoring cross-channel observations (where traffic from

one channel is observed by an adapter monitoring another), the upper limit for

BPS is therefore one beacon per 100 TU (≈ 9.77 b
s
). Factoring the directionality

54

www.manaraa.com

of the antenna at a very generous 120° beam width, the maximum expected BPS

is reduced to 1 every 300 TU (≈ 3.26 b
s
). It is possible the observed BPS is higher

due to reflections reducing the directionality reduction. The lower limit of BPS

is set to the worst case of 0 b
s
.

In the case of focused capture modes, BPSf is expected to be higher than

BPSw because focused captures do not incur any channel switching penalty.

This metric is expected to be 50% higher than BPSw, which is 4.89 b
s
.

4. Capture Overhead (CO). This metric is the amount of time overhead nec-

essary to conduct a capture. It is the difference of DT, which is the time that

localizer is busy conducting the capture and CD, the time spent actively

capturing:

CO = DT − CD (4)

Capture overhead (CO) is a function of system performance and when running

on the same hardware (Raspberry Pi), is assumed to remain constant regardless

of the number of beacons observed and the capture duration. This metric may

be used for both wide and focused captures since the system processes are the

same.

5. Capture Processing Overhead (CPO). Capture processing overhead (CPO)

is the amount of time necessary to process a data set and generate predicted

bearings for any observed WAPs. This metric is a function of the number w of

WAPs observed:

CPO(w) = aw + b (5)

where a and b constants based on processor hardware.

55

www.manaraa.com

Table 9. Performance Metrics

Metric Units Accepted Range Expected Range

Received signal strength indication (RSSI) dBm −∞ to ∞ −80 dBm < RSSI < −30 dBm
Milliwatt (mW) mW 0 to ∞ 0 mW < mW < 1 mW
Beacons per second (BPS) - Wide b

s
0 to ∞ 0 b

s
< BPSw < 3.26 b

s

Beacons per second (BPS) - Focused b
s

0 to ∞ 0 b
s
< BPSf < 4.89 b

s

Capture overhead (CO) s 0 to ∞ 0.5 s < CO < 1 s
Capture processing overhead (CPO) s 0 to ∞ aw + b < CPO < cw + d
Bearing error (BE) ° 0 to 180 5° < BE < 45°
Location error (LE) m 0 to ∞ LE < 10 m

56

www.manaraa.com

6. Bearing Error (BE). Establishing and maintaining a wireless connection

with a target WAP is the primary role of the DWAP. This metric measures the

difference between the bearing predicted by a localization attempt and the true

bearing. This research is conducted under the bearing consistency assump-

tion listed in Section 1.6. The impact of the possible difference between the

true bearing and the bearing of strongest RSSI is supposed to be minimal, yet

should be understood that this metric is measuring the error between what the

prototype predicted as the bearing of strongest RSSI and the true bearing to

the responsible WAP.

The bearing accuracy metric may be expressed as a positive real number,

BE, which is the difference of true bearing (TB) and peak RSSI (PR):

BE = |TB − PR| (6)

7. Location Error (LE). The locations of Wi-Fi emitters such as WAPs and

smartphones may be discovered given enough radiolocation data. The knowl-

edge of these locations is valuable to wardroning UAVs, search and rescue UAV,

and DWAPs to enumerate just a handful of the many other possible uses. This

research seeks to derive location data for the experiment WAPs using the di-

rectional data produced by multiple capture sets.

The location accuracy may be expressed as a positive real number, LE,

which is the haversine (i.e., great-circle [25]) distance between the predicted

position (PP) and true position (TP), where each position is comprised of two

components latitude and longitude, (ϕ1, λ1) and (ϕ2, λ2) respectively:

LE = 2r arcsin
√

hav(ϕ2 − ϕ1) + cos (ϕ1) cos (ϕ2) hav(λ2 − λ1) (7)

where

hav(Θ) = sin2

(
Θ

2

)
(8)

57

www.manaraa.com

Variable r is the radius of the earth at a particular latitude ϕ, given by

r(ϕ) =

√
(a2 cosϕ)2 + (b2 sinϕ)2

(a cosϕ)2 + (b sinϕ)2
(9)

and where a and b are the equatorial radius (6 378 137 m) [26] and polar radius

(6 356 752 m) [27] respectively.

4.6 Experiment Environment

All experiments are conducted at the AFIT campus at three locations, listed

in Table 12, displayed in Figure 15, and centered around coordinates 39.782 755 6°,

−84.083 002 8°.

WAPs. Ten WAPs are placed surrounding the capture locations and shown in

Figure 14. The WAPs are configured with unique SSIDs and channels as recorded in

Table 10, as well as their respective coordinates and unique BSSIDs. Table 11 shows

the hardware and software version of each WAP.

Note: WAP 0 was installed in a public area, and between treatments 4 and 5 went

missing. It was replaced by WAP 10, which is indicated by gray text in Tables 10

and 11. WAP 10 is configured identically to WAP 0 except for SSID and BSSID; a

change in these values has no effect on these research experiments.

Each WAP is prepared by following the same procedure:

1. Firmware Updated. If an updated firmware is available, it is applied to the

WAP.

2. Reset to Factory Defaults. Each WAP is reset to its factory defaults.

3. WPA PSK Enabled. WPA PSK security protocols are enabled on each

WAP.

58

www.manaraa.com

Table 10. Wireless Access Point Configurations & Locations

WAP Chan SSID BSSID Lat Lon
0 10 RESEARCH MULLINS 0 1c:7e:e5:30:57:4e 39.78249 -84.0839
1 1 RESEARCH MULLINS 1 00:18:e7:e9:04:59 39.78229 -84.0838
2 2 RESEARCH MULLINS 2 00:18:e7:e9:07:f5 39.78240 -84.0831
3 3 RESEARCH MULLINS 3 00:12:17:9f:79:b6 39.78250 -84.0828
4 4 RESEARCH MULLINS 4 00:16:b6:58:f3:0d 39.78287 -84.0828
5 5 RESEARCH MULLINS 5 60:38:e0:06:2d:9c 39.78322 -84.0827
6 6 RESEARCH MULLINS 6 60:38:e0:06:3a:d8 39.78346 -84.0827
7 7 RESEARCH MULLINS 7 60:38:e0:06:34:e8 39.78329 -84.0831
8 8 RESEARCH MULLINS 8 60:38:e0:06:34:ac 39.78325 -84.0832
9 9 RESEARCH MULLINS 9 60:38:e0:06:3a:f0 39.78342 -84.0838
10 10 RESEARCH MULLINS 10 1c:7e:e5:30:54:3e 39.78249 -84.0839

Table 11. Wireless Access Point Models & Firmware

WAP Model Firmware
0 DIR-615, HW E3 5.1
1 DIR-615, HW E3 5.11
2 DIR-615, HW E3 DD-WRT v24-sp2
3 WRT55AG, v2 1.67
4 WRT55AG, v2 1.67
5 WRT1200AC v2 2.0.4.173345
6 WRT1200AC v2 2.0.4.173345
7 WRT1200AC v2 2.0.4.173345
8 WRT1200AC v2 2.0.4.173345
9 WRT1200AC v2 2.0.4.173345
10 DIR-615, HW E3 5.1

59

www.manaraa.com

4. Exclusive 802.11g Mode Enabled. The 802.11g standard is enabled on

each WAP, and all other standards are disabled.

5. Unique Channel Set. Each WAP is assigned a unique channel, shown in

Table 10.

6. Install WAP. Take each WAP to its location and plug into a power source.

Environment. The experiment location is chosen because each WAP is sheltered

from the elements in secure locations; this selection avoided having to set up and take

down the WAPs between experiments. Furthermore, the environment presents a re-

alistic, real-world Wi-Fi environment, including commercial buildings and structures

with existing 2.4 GHz 802.11g equipment behind walls constructed of brick, concrete,

steel, glass, and other materials. The AFIT campus is selected due to its suitability

under these considerations.

Compared to the environment that a UAV would be conducting these actions,

this ground-based experiment suffers a significant disadvantage due to electromag-

netic issues. While emitters within structures mimics the types of targets a DWAP

would target, the structures surrounding the capture location do not accurately simu-

late an airborne environment, primarily regarding reflections. Analysis of this effect is

discussed in more depth in Chapter V, however, it is important to note here. Further-

more, the selected location did not test the distance limits of the directional antenna,

which is not a key part of these experiments.

Table 12. Capture Locations

Capture Location Latitude Longitude

1 39.7827250 -084.0830556
2 39.7827417 -084.0828778
3 39.7828778 -084.0830639

60

www.manaraa.com

Figure 14. Wireless Access Point Locations (Map data: Google)

61

www.manaraa.com

Figure 15. Capture Locations (Map data: Google)

62

www.manaraa.com

4.7 Experimental Design

4.7.1 Treatments.

This experiment is conducted in three sets of treatments, each of which is detailed

in this section. The following treatments are analyzed in like order starting in Sec-

tion 5.3, and summarized in Tables 13, 14, and 15. The capture configuration files

used in executing these treatments in localizer are listed in Appendix D.

Parameter Discovery. The first goal of this experiment is to identify the

parameter values (Table 7) that produce optimal metrics (Table 9).

A treatment is prepared for each of the parameters to capture data under each

of the proposed values, with other parameters held constant to a reasonable value.

All parameter discovery treatments are conducted at capture location 1 as listed in

Table 12 unless otherwise noted.

1. Rotation rate This parameter optimization has two treatments:

(a) RR = {5, 10, 15, 30}

Passes: 30

Held-constant parameter: CHI = 130 TU

Held-constant parameter: CHD = 1

Note: This treatment uses a value of CHI that is not relatively prime

with the default beacon rate of 100 TU; this treatment was performed

before the relatively prime condition was placed on parameter CHI. The

following treatment uses the optimal value for parameter CHI, 179 TU.

(b) RR = {10, 15, 20, 25}

Passes: 45

63

www.manaraa.com

Held-constant parameter: CHI = 179 TU

Held-constant parameter: CHD = 1

An analysis of the first treatment for RR shows a gap between 15 s
rev

to 30 s
rev

that may produce higher BPS, so the second treatment is intended to explore

RR values in that gap.

2. Focused capture rotation rate This parameter optimization has a single treat-

ment:

FCRR = {5, 6, 7, 8, 9, 10, 11, 12, 13}

Passes: 30

Held-constant parameter: channel = 8

3. Channel hop interval This parameter optimization has a single treatment:

CHI = {109, 119, 129, 139, 149, 159, 169, 179, 189, 199}

Passes: 30

Held-constant parameter: RR = 10 s
rev

Held-constant parameter: CHD = 1

4. Channel hop distance This parameter optimization has a single treatment:

CHD = {1, 2, 3, 4, 5}

Passes: 30

Held-constant parameter: RR = 20 s
rev

Held-constant parameter: CHI = 179 TU

This treatment is conducted inside AFIT; specific WAP beacons or a known

location is not necessary for this treatment which compares BPS performance

across many passes and different CHD.

64

www.manaraa.com

Table 13. Parameter Discovery Treatments

Parameter Treatment Passes Values Held-Constant

RR
1a 30 {5, 10, 15, 30} CHI = 130 TU

CHD = 1 ch

1b 45 {10, 15, 20, 25} CHI = 179 TU
CHD = 1 ch

FCRR 2 30 {5, 6 . . . 12, 13} channel = 8

CHI 3 30 {109, 119, 129 . . . 199} RR = 10 s
rev

CHD = 1 ch

CHD 4 30 {1, 2, 3, 4, 5} RR = 20 s
rev

CHI = 179 TU

Positional Captures. After the discovery treatments are performed and op-

timal parameters are identified, positional capture treatments are conducted. These

treatments are identical except for their locations, as specified in Table 12. For these

treatments there are no held-constant factors, except for those parameters that have

been identified as optimal, which are:

• RR: 20 s
rev

• CHI: 179 TU

• CHD: 2 ch

5. Positional Capture 1 Passes: 150

6. Positional Capture 2 Passes: 150

7. Positional Capture 3 Passes: 150

The results of these treatments show the performance of localization using these

methods and parameters regarding the metrics BE and LE.

65

www.manaraa.com

Table 14. Positional Capture Treatments

Treatment Position Passes
Optimal Constant Parameters

RR CHI CHD

5 1
30 20 s

rev
179 TU 2 ch6 2

7 3

Focused Captures. This final treatment involves conducting focused captures

to identify the parameter FCW that produces the smallest BE.

In designing this treatment, batch captures are programmed to attempt a focused

capture on every identified experiment WAP with an FCW of 360 degrees, the largest

possible value for FCW. During processing and analysis, each possible FCW is derived

from the data set with a real FCW of 360°. The derived FCWs are termed virtual

focused capture width (vFCW). For example, a vFCW of 2° is derived that consists

of any beacons detected within the 2° bounds. This set is used to produce a bearing

prediction, and the accuracy of the bearing prediction is recorded. A new vFCW of

4° is derived, and a bearing prediction is produced for a FCW of 4°. Each possible

vFCW is derived (up to a vFCW of 360°) and its bearing prediction performance

recorded. The recorded bearing prediction errors are analyzed and an optimal FCW

is determined.

For these treatments there are no held-constant factors, except for those parame-

ters that have been identified as optimal, which are:

• RR: 20 s
rev

• CHI: 179 TU

• CHD: 2 ch

• FCRR: 6 s
rev

66

www.manaraa.com

Two treatments are performed at capture locations 1 and 2, per Table 12. These

data are used to determine the optimal FCW, as well as demonstrate the LE perfor-

mance with the discovered optimal parameters.

8. Focused capture width: Capture 1 Passes: 30

9. Focused capture width: Capture 2 Passes: 30

4.7.2 Testing Process.

Every capture is conducted at the locations enumerated in Table 12 unless other-

wise noted. The process for each treatment is, as follows:

1. The prototype is taken to the appropriate capture location and mounted atop

the capture platform securely.

2. Power is provided to both the processor and the motor.

3. Physical connectivity with the processor is established using a laptop with a

bridged Ethernet connection and a Cat5 Ethernet cable. The laptop operating

system is Windows 10 Enterprise.

4. Network connectivity is established with secure shell (SSH) using Xshell 5. Once

established, tmux is used to create a terminal session that is maintained if the

laptop is disconnected from the processor.

Table 15. Focused Capture Treatments

Treatment Position Passes
Optimal Constant Parameters

RR CHI CHD FCRR

8 1
30 20 s

rev
179 TU 2 ch 6 s

rev9 2

67

www.manaraa.com

5. The antenna is aligned to magnetic north (0° N) using a magnetic map compass.

6. localizer is started in shell mode ($ localizer -s) and batch capture mode

is initialized (> batch).

7. The desired capture configuration file is imported (batch> import <conf>).

8. The capture is started (batch> capture).

9. The capture proceeds automatically.

10. Once complete the antenna should be reset North. The bearing is verified to

be 0° North, and the capture is validated. If not, the capture is discarded and

performed again from step 5.

11. After all captures are completed, the data is committed and pushed to the

remote git branch.

12. (Optional) While it is possible to process directly on the capture device, using

a more powerful computer provides significantly better processing performance,

especially for larger data sets. Pull the captured data from the git repository

and process it with the command $ localizer -p. Push the processed files to

the remote git branch.

13. Repeat from step 5 as necessary.

68

www.manaraa.com

4.8 Summary

This chapter outlines the capture process under study in this research, as well as

the many necessary details about how the capture method is validated and optimized.

The experiment environment is discussed at length, as well as the metrics that are used

to judge the effectiveness of the proposed capture process. Parameters that must be

optimized are enumerated. Each experiment treatment is discussed in detail. Finally,

the explicit testing process is enumerated with necessary detail.

69

www.manaraa.com

V. Results and Analysis

5.1 Overview

This chapter describes the results of the experiments performed using the localizer

framework and according to the experimental design in Chapter IV. First, Section 5.2

covers noteworthy observations of the experimentation process. Section 5.3 discusses

the findings of the parameter discovery treatments and lists the optimal parameters

that are shown in Table 18. The positional capture treatments are analyzed in Sec-

tion 5.4 with emphasis on the bearing errors measured when using the localizer

framework to predict the bearing to observed WAPs. Finally, the focused capture

treatments are reviewed in Section 5.5 with emphasis on the location errors measured

when predicting observed WAP locations.

Post-capture analysis is performed using the Python pandas (version 0.22.0),

scipy (version 1.0.0), and matplotlib (version 2.1.2) packages in the JupyterLab

0.30.6 environment.

5.2 Stepper Motor Missteps

The treatments enumerated in Chapter IV were conducted without difficulty ex-

cept for an issue of missing steps during focused captures that is discussed in this

section.

5.2.1 Temperature.

The experimental treatments for focused captures were conducted during a period

of cold weather, with temperatures dropping below 0 ◦C. No prototype equipment was

affected by the low temperatures except for the cable lead from the Wi-Fi adapter

to the processor. The cable became quite stiff as the PVC sheath became cold.

70

www.manaraa.com

During a focused capture, the antenna may rotate between −360° and 720°. As

the antenna rotated and the cable wound, the cable’s stiffness acted as a spring

and resisted movement in both directions. Skipped steps were observed during cold-

weather captures due to this effect.

A metal-sheathed cable was obtained to replace the original PVC-sheathed cable,

which maintained flexibility well below 0 ◦C, and the step skipping due to stiff wires

was eliminated.

5.2.2 Reset Rate.

As noted in Section 4.4, each capture started and ended with a measurement of the

antenna bearing. The measurement served to validate the accuracy of the recorded

bearings for each observed beacon; if the final bearing did not match the starting

bearing, the stepper motor had missed steps, and the capture set was considered

invalidated and discarded. Parameter discovery and positional capture treatments

both performed remarkably well, conducting hundreds of captures without missed

steps. Unfortunately, the final treatment set (focused capture treatments) suffered

from missed steps and invalidated capture sets.

Troubleshooting the issue revealed that cause was isolated to the antenna reset

process. Focused captures “reset” the antenna following a capture, preparing for the

next capture, moving it from 0 to 180 degrees either clockwise or counter-clockwise

based on the optimal path. When resetting, the antenna uses a faster rate of travel,

5 s
rev

. This speed is appropriate when resetting a full revolution (standard for the

first two treatment sets), but it causes missed steps when used for very short reset

distances. Step skipping was observed at this reset speed between angles of 1 and 30

degrees.

71

www.manaraa.com

Increasing the s
rev

(i.e., slowing the reset rate) to a value that would be safe for

very low rotational distances, would increase the capture time to an unacceptable

level. A solution was determined in the form of a variable reset rate based on the

reversed sigmoid function

S(x) = a+
b− a

1 +
(
x
c

)d (10)

where values for a, b, c, and d were found using non-linear least squares interpola-

tion (from the Python scipy.optimize.curve fit library) and the following initial

values:

y = {20, 7, 5, 4}
x = {0, 90, 180, 360}

The initial values indicate that at a rotation distance of 0°, the reset rate should

be 20 s
rev

, at 90° it should be 7 s
rev

, and so on. The least squares optimization produces

the coefficients

a = 3.235

b = 20.000

c = 34.681

d = 1.300

Reset rotation rate RRr as a function of rotation distance δ, is shown in Figure 16

and given as:

RRr(δ) = 3.235 +
16.765

1 +
(

δ
34.681

)1.300 (11)

The sigmoid model script is found in Appendix C.1.

72

www.manaraa.com

0 45 90 135 180 225 270 315 360

Rotation Distance (◦)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
R

o
ta

ti
on

R
at

e
(

s re
v

)
Initial Data

Figure 16. Reset Rotation Rate RRr (Sigmoid)

5.3 Parameter Discovery Analysis

Parameter discovery treatments provide data that is analyzed in this section to

indicate ideal capture parameters. This section summarizes the findings of treatments

1-4, per Table 13, where all held-constant factors are listed.

5.3.1 Rotation rate.

Rotation rate consists of two treatments, a preliminary treatment that identified

the need for further data, and the follow-on treatment to collect it. The intent of

these is to discover the RR value that optimizes BPS.

73

www.manaraa.com

Treatment 1a. This treatment iterates over four values {5, 10, 15, 30} of 30

passes each to produce the box plots of Figure 17a. The whiskers of the plot show

the tendency of the BPS to normalize over longer captures as evidenced by the lower

variance of longer captures. These results indicate that there may be more optimal

values between 10 and 30 s
rev

, which is the impetus for RR’s additional treatment.

Treatment 1b. This treatment bridged the gap between 10 s
rev

to 30 s
rev

, testing

the values {10, 15, 20, 25} over 45 passes. The results are displayed in Figure 17b with

the optimal value for CD highlighted, 20 s
rev

. The highest median BPS of 3.45 b
s

is

slightly higher than our maximum expected value of 3.26 b
s
, likely due to an abundance

of reflections and cross-channel observations. The notches of the boxes indicate the

95% confidence interval of the data, with the optimal RR value being particularly

tight relative to the other parameter values [28].

5.3.2 Focused capture rotation rate.

Treatment 2. This parameter received only a single treatment, holding the chan-

nel constant at FCRRs of {5, 6, 7, 8, 9, 0, 11, 12, 13}, each over 30 passes. The optimal

parameter is 6 s
rev

, which produces a median BPSf of 10.17 b
s

shown in Figure 18.

The median value of FCRR at 6 s
rev

is surprising, given that it exceeds the expected

maximum value of BPS of 9.77 b
s

estimated in Section 4.5. The likely reason that this

value is so high is due to the high amount of reflections in the capture environment.

Another possibility is the extra amount of time that CaptureThread captures packets

before the timer starts on the given CD.

74

www.manaraa.com

5 10 15 30

Rotation Rate (RR) (
s

rev
)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

B
ea

co
n

s
P

er
S

ec
on

d
(B

P
S

)
(
b s

)

(a) Treatment 1a Results

10 15 20 25

Rotation Rate (RR) (
s

rev
)

2.5

3.0

3.5

4.0

4.5

B
ea

co
n

s
P

er
S

ec
on

d
(B

P
S

)
(
b s

)

Optimal RR (median: 3.45
b

s
)

(b) Treatment 1b Results

Figure 17. Rotation Rate (RR) Treatment Results

75

www.manaraa.com

5 6 7 8 9 10 11 12 13

Fixed Channel Rotation Rate (FCRR) (
s

rev
)

2

4

6

8

10

B
ea

co
n

s
P

er
S

ec
o
n

d
(B

P
S

)
(
b s

)

Optimal FCRR (median: 10.17
b

s
)

Figure 18. Focused Capture Rotation Rate (FCRR) Treatment Results

5.3.3 Channel hop interval.

Treatment 3. This parameter was tested at the values of {109, 119, 129, 139,

149, 159, 169, 179, 189, 199} over 30 passes. The optimal BPS is 3.75 s
rev

, discovered

at parameter value of 179 TU as shown in Figure 19.

5.3.4 Channel hop distance.

Treatment 4. This parameter was tested at the values of {1, 2, 3, 4, 5} over 30

passes. The optimal BPS is 3.40 s
rev

, discovered at parameter value of 2 ch as shown

in Figure 20. 2 ch has more variance than 1 ch, which is speculated to be caused by

the occurrence of observations across channels, such as observing channel 5’s beacons

on channels 4 and 6.

76

www.manaraa.com

109 119 129 139 149 159 169 179 189 199

Channel Hop Interval (CHI) (TU)

2.0

2.5

3.0

3.5

4.0

4.5

B
ea

co
n

s
P

er
S

ec
on

d
(B

P
S

)
(
b s

)

Optimal CHI (median: 3.75
b

s
)

Figure 19. Channel Hop Interval (CHI) Treatment Results

5.4 Positional Capture Analysis

Treatments 5-7. Positional capture treatments provide data that is analyzed

in this section to test the performance of the optimal parameters identified in the

previous section. Each treatment is processed to determine the BE as defined in

Section 4.5, by doing the following:

1. Extract Series. For each capture across all three treatments, create a series

of the beacon RSSI values as a function of bearing for each unique BSSID.

2. Convert RSSI (dBm) to mW scale. Converting dBm to mW produces

improved prediction accuracy by penalizing very low RSSI over relatively higher

RSSI values.

77

www.manaraa.com

1 2 3

Channel Hop Distance (CHD) (chan)

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

B
ea

co
n

s
P

er
S

ec
o
n

d
(B

P
S

)
(
b s

)

Optimal CHD (median: 3.40
b

s
)

Figure 20. Channel Hop Distance (CHD) Treatment Results

3. Interpolate. For each series, interpolate the sparse data using all valid

interpolation methods provided by the scipy.interpolate library.

4. Calculate Error. Determine the error of each interpolated series and measure

it against the true bearing to determine BE.

5. Record Values. Record the values to a table for analysis.

78

www.manaraa.com

5.4.1 Interpolation.

To determine the best interpolation method, the median BE is determined for all

interpolation methods provided by pandas.series.interpolate [29] (scipy.interpolate

[30]). To compute these values, each interpolation method is performed on each series

in the data captured in treatments 5-7, with 4,342 total series derived from the treat-

ments. The prediction is performed for each and compared with truth, and an error

value is determined and stored. The median of these errors is displayed in Table 16

sorted by performance in ascending order.

Table 16. Interpolation Performance

Method Median Error

PCHIP 13.70°
BPoly 14.31°
Naive 14.70°
SLinear 14.83°
Linear 15.09°
Akima 16.44°
Bayercentric 22.83°
Cubic 24.94°
Quadratic 25.70°
Krogh 59.28°
Random 89.68°

The following are the top performing interpolation methods with their median

error rate for all sample sizes and a brief description of the interpolation technique

employed:

1. Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)

Error: 13.70°

This interpolation method is a spline where each interval is limited to a

third-degree polynomial and produces a smooth, continuous function with a

continuous first derivative, a feature of the Hermite form.

79

www.manaraa.com

2. Bernstein Polynomial (BPoly)

Error: 14.31°

This interpolation method is a spline where each interval is Bernstein ba-

sis polynomial, a limited polynomial form that eases approximations such as

continuous interpolation.

3. Naive

Error: 14.70°

The ’Naive’ method is not an interpolation method, but the simplest method

of choosing a bearing by simply selecting the bearing with the highest mW value.

The interpolation and bearing prediction process is illustrated in Figure 21 where

Piecewise Cubic Hermite Interpolating Polynomial and Bernstein Polynomial meth-

ods are performed on the same sparse beacon series. The vertical lines represent the

interpolation methods’ predictions as well as the true bearing to the WAP.

To visualize the performance of each interpolation method, Figure 22 shows the

top three interpolation methods as functions of beacon series sample size.

5.4.2 Bearing Error Analysis.

Further analysis shows that the performance of the interpolation methods varies

based on how many beacons that are observed per capture, demonstrated by Fig-

ure 22. Except for the case of a sample size of 1, where SLinear performed the best

with a median BE of 26.75°, nearly all the rest of the sample sizes performed best

with the PCHIP interpolation method, which had an overall median BE of 13.70°,

significantly lower than our expected maximum of 45°, per Table 9.

80

www.manaraa.com

0 45 90 135 180 225 270 315 360

Bearing (◦)

0.00e+00

1.00e-06

2.00e-06

3.00e-06

4.00e-06

5.00e-06

6.00e-06

7.00e-06

8.00e-06

R
S
S
I

(m
W

)

Piecewise Cubic Hermite (PCHIP)

PCHIP Predicted Bearing: 146◦

Bernstein Polynomial (BPoly)

BPoly Predicted Bearing: 154◦

True Bearing: 153◦

Beacons

Figure 21. Interpolation of 5-Sample Capture using PCHIP and BPoly Interpolation Methods

81

www.manaraa.com

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Sample Size

10

20

30

40

50

60

70
M

ed
ia

n
B

ea
ri

n
g

E
rr

o
r

(B
E

)
(◦

)
PCHIP

BPoly

Naive

Figure 22. Interpolation Performance Per Beacon Sample Size

Figure 22 shows a steady reduction and smoothing in bearing error as the sample

size increases, however the error increases at 14 and 15 beacon sample sizes for an un-

known reason. Analysis of the data did not produce clues as to the cause of this bump,

but the disparity of th pchip interpolation and naive method are demonstrated here,

where an interpolation method does demonstrate significant performance advantage

over the computationally simpler naive method. The increase in bearing prediction

error in the larger beacon sample sizes, such as 19 and 20 are due to the signifi-

cantly smaller number of series for those particular sample sizes, as demonstrated in

Figure 25.

82

www.manaraa.com

The performance of PCHIP overall is summed up in Figure 23, which shows the

PCHIP BE box and histogram charts. While the median is quite close to zero, there

are significant outliers throughout, represented in the box plot by the black ticks

outside the box. There are peaks at 180° and −180° visible at both ends of the

histogram which represent a high number of errors at 180°.

It should be noted that bearing errors are calculated using the absolute value of

the difference between true and predicted bearings. Otherwise, the median errors

would be misleadingly close to 0. It is useful, however, to plot the first, second, and

third quartiles of PCHIP BE to observe the spread of BEs, shown in Figure 24. This

Figure shows the high accuracy of the wide sweep when at least 2 or 3 beacons are

observed for a given BSSID. Figure 25 shows the number of sets per sample size to

show the significance of the data in Figure 24.

The top interpolation method for each recorded sample size is given in Table 19

in Appendix E.

Figures 32, 33, and 34 in Appendix E show the performance of PCHIP for each

BSSID as polar histograms. The figures for treatments 5 and 7 show a notable 180°

error for WAP RESEARCH MULLINS 7; treatment 7 for this WAP is shown in

Figure 26. Looking at the map (Figure 14) it can be surmised that these errors are

due to reflections off the building directly behind the prototype at capture points 1

and 3. These errors also contribute to the outliers at 180° and −180° in Figure 23.

5.4.3 Location Error Analysis.

Bearing predictions from multiple captures may be combined to predict the lo-

cation of a WAP. When the predictions are represented as a ray with an origin

component and vector component, the point nearest to all rays is presumably the

point closest to the emitter.

83

www.manaraa.com

−180 −135 −90 −45 0 45 90 135 180

−180 −135 −90 −45 0 45 90 135 180

Bearing Error (BE) (◦)

Figure 23. PCHIP Error Statistics

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Sample Size

−90

−60

−30

0

P
C

H
IP

M
ed

ia
n

B
ea

ri
n

g
E

rr
or

(B
E

)
(◦

)

Figure 24. PCHIP Interpolation Quartiles By Beacon Sample Size

84

www.manaraa.com

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Sample Size

0

50

100

150

200

250

300

350

400

T
o
ta

l
S

a
m

p
le

s

Figure 25. Interpolation Series Per Beacon Sample Size

0

45

90

135

180

225

270

315

RESEARCH MULLINS 7

True Bearing

Predicted Bearing

Figure 26. PCHIP Polar Prediction Histogram

85

www.manaraa.com

This research uses the least squares optimization implemented in Appendix F

where any number of rays may be processed and a point nearest all of them is pro-

duced. Least squares optimization is performed using data from treatments 5, 6,

and 7 for each combination of capture location, capture pass, and BSSID, totaling

5,848,250 combinations. Because many captures did not receive beacons from all 10

WAPs, the total number of location prediction sets is reduced to 5,319,396.

Combinations of two capture locations are compared to combinations with three

in Figure 27 to determine if there is a significant advantage to adding a third bearing

prediction.

There are significant large outliers in these results, caused by very nearly parallel

bearing predictions that converge hundreds or thousands of meters away. Further-

more, when all rays diverge, the closest point to the rays is the mean of their origins,

which in this research is never the correct location.

The results from the least squared error localization method are higher than ex-

pected, with median location errors over 10 m higher than our expected maximum

of 50 m. The three capture sets performed notably better than the two capture sets,

with median errors of 69.93 m and 60.66 m respectively.

Two examples of the results of the least squares optimization function are dis-

played in Figures 28a and 28b, demonstrating low location error and high location

error, respectively. Figure 28c shows an example of a case of reflection that con-

tributes to the very highest of location prediction errors - each bearing prediction is

in the opposite direction due to reflections off the surrounding structures. This is

an example of a limitation of the experiment environment that will not exist on an

airborne prototype.

86

www.manaraa.com

0.000

0.002

0.004

0.006

0.008

0.010
Two-Capture (312,822 samples)

0 200 400 600 800 1000 1200 1400

Location Error (LE) (m)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014
Three-Capture (5,006,574 samples)

E
rro

r
D

en
sity

Figure 27. Location Errors for Capture Sets of Two and Three Locations

87

www.manaraa.com

High Location Error Analysis and Compensation. The analysis of bear-

ing prediction performance in Section 5.4.2 shows that bearing predictions can be

very accurate, however even small errors in bearing prediction may severely hinder

location prediction performance if the bearing predictions diverge. When the bearing

predictions diverge, then the most “optimal” location prediction is the mean position

of each ray starting point, a significantly high location error in these experiments.

Additionally, if the bearing predictions converge but are very close to parallel, then

the location prediction may be very distant at their point of intersection (see Fig-

ure 28b). Limits may serve to counter these cases and improve location prediction

performance.

To test this theory, the data was filtered to eliminate those predictions with an

error of greater than 500 m and those with a prediction that is less than 1 m from

the mean position of the prediction rays, as enumerated in Table 17. The number

of predictions of the original 5.3 million that remain is 4.4 million, which indicates

a reduction of 17%, the majority of those eliminated due to the 1 m mean distance

from ray origin constraint (13%). Figure 27 is reproduced as Figure 29 to show the

difference made by constraints. With these constraints applied, median error for two-

ray and three-ray predictions remain practically unchanged at 69.14 m and 60.14 m

respectively.

Table 17. Location Constraints

Metric Constraint

Distance from mean ray origin >1 m
Distance from true emitter location <500 m

88

www.manaraa.com

-84.08389 -84.08363 -84.08337 -84.08312 -84.08286

Longitude

39.78206

39.78232

39.78258

39.78284

39.78309

L
a
ti

tu
d

e

Capture Location

Prediction

Emitter

(a) Low Location Error Example (Error: 9.24 m)

-84.0833 -84.0819 -84.0805 -84.0790 -84.0776

Longitude

39.7810

39.7825

39.7839

39.7853

39.7867

L
at

it
u

d
e

Capture Location

Prediction

Emitter

(b) High Location Error Example (Error: 453.78 m)

Figure 28. Location Error Examples

89

www.manaraa.com

-84.0846 -84.0811 -84.0777 -84.0742 -84.0708

Longitude

39.7772

39.7807

39.7841

39.7876

39.7910

L
at

it
u

d
e

Capture Location

Prediction

Emitter

(c) Reflection Error Example (Error: 1.13 km)

Figure 28. Location Error Examples (cont.)

90

www.manaraa.com

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175 Two-Capture (232,784 samples)

0 100 200 300 400 500

Location Error (LE) (m)

0.000

0.005

0.010

0.015

0.020
Three-Capture (4,175,531 samples)

E
rro

r
D

en
sity

Figure 29. Location Errors for 2 and 3 Captures With Constraints

91

www.manaraa.com

It is possible that improved location prediction may be achieved by using a

weighted algorithm to penalize very distant predictions or to assign lengths to the

ray vector component that is relative to the PR value. This would serve to avoid

very distant prediction errors, however, Figure 29 shows that those outliers are not

common and do not affect the median error to a significant degree.

5.5 Focused Capture Analysis

5.5.1 Focused capture width.

Treatments 5-7. The data from these treatments identify the optimal FCW.

Interestingly, the best performing FCW barely outperformed the median PCHIP BE

rate, only improving the wide capture performance by 1°.

Figure 30 shows the first and third quartiles, in addition to the gap between them

as a function of FCW.

The gap levels out near 90°, where the median is also very close to zero. The

optimal FCW near 90° is identified as 84°. Detailed statistics for this FCW are shown

in Figure 31, and nearly identical standard deviation of 56.44° when compared with

wide capture performance (Figure 23).

5.5.2 Focused Capture Analysis Summary.

Surprisingly, focused captures do not provide significantly lower BE. It is likely

not necessary to perform a focused capture, except in cases where a wide capture

failed to produce a good bearing (i.e., the DWAP could not connect to the WAP at

the predicted bearing). If it is necessary, an FCW of 84° is optimal.

92

www.manaraa.com

45 90 135 180 225 270 315 360

Focused Capture Width (◦)

−30

0

30

60

90

120

150

180
M

ed
ia

n
B

ea
ri

n
g

E
rr

or
(B

E
)

(◦
)

Median

|Median|
First and Third Quartile

Figure 30. Bearing Error as a Function of Focused Capture Width

−180 −135 −90 −45 0 45 90 135 180

−180 −135 −90 −45 0 45 90 135 180

Bearing Error (BE) (◦)

Figure 31. Bearing Error Histogram with a Focused Capture Width of 84°

93

www.manaraa.com

5.6 Analysis Summary

Table 18 summarizes the discovered parameters that produced optimal bearing

and location predictions.

The performance of wide captures using these parameters concerning BE is on

the low end of the expected value range in Table 9. Unexpectedly, focused captures

failed to produce significantly better BE performance indicating that wide captures

are sufficient for most purposes. Focused captures may still be useful for certain

applications.

Location prediction performance is lower than expected, yet future work may be

able to optimize the parameters further, such as capture distance, and by introducing

more rays to the optimization function.

Table 18. Optimal Parameters

Parameter Units Optimal Value

Rotation rate (RR) s
rev

20 s
rev

Focused capture rotation rate (FCRR) s
rev

6 s
rev

Channel hop interval (CHI) tu 179 TU
Channel hop distance (CHD) ch 2 ch
Focused capture width (FCW) ° 84°

94

www.manaraa.com

VI. Discussion and Conclusion

6.1 Overview

UAV technology is evolving at a rapid pace, and the consumer market is producing

UAVs that fly farther, operate longer, carry more weight, and cost less than the pre-

vious generation. This trend shows few signs of slowing, and network administrators

and defenders must understand the threats they face in this area.

UAVs present threats in the form of DWAPs, particularly because of the availabil-

ity and low cost of the parts necessary to construct one. This research successfully

demonstrated how a hypothetical DWAP, equipped with a high-gain directional an-

tenna, might identify and locate target DWAPs, and also showed that inexpensive,

low-performance hardware is capable of predicting target WAP bearings.

This chapter summarizes the research and analysis from this experimental work.

Section 6.2 summarizes conclusions drawn from the experimental results. Section 6.3

highlights the significance of the research findings. Finally, Section 6.4 enumerates

possible expansions of this research.

6.2 Research Conclusions

The goals of this research were to develop passive WAP bearing and location

prediction techniques designed to work on an airborne platform. To fulfill these

goals, a hardware prototype was designed and built that fulfilled the goals of low

weight, low cost, and adequate processing power for the required tasks. A software

framework, localizer, was purpose-built for the prototype to perform data collection

and real-time bearing prediction.

95

www.manaraa.com

The hypothesis that a DWAP-mounted directional antenna may be used to iden-

tify the bearing and location of a WAP was tested by first identifying optimal pa-

rameters for data capture. Optimal values for all workload parameters listed in the

System Under Test (Figure 13) were discovered and data capture was conducted to

collect a large body of data. The captured data was analyzed to measure performance

of different bearing and location prediction methods.

Analysis of the data captured by the localizer framework shows that the PCHIP

interpolation method produces median bearing predictions as low as 8.49°, and a me-

dian prediction error of 13.70° for all sample sizes. The bearing prediction hypothesis

was proven in this research, and a simple method of reliably performing bearing pre-

dictions is demonstrated. The focused capture method did not produce meaningful

improvements in bearing accuracy, which was unexpected, however, this result affirms

the strength of the wide capture method. Furthermore, the workload parameters pro-

duced by this research provide a starting point for future research into the viability

of using directional antennae on UAV platforms.

The location prediction method of using least-squares optimization of multiple

bearing predictions performed worse than expected and does not represent a good

localization technique in its current state. This research failed to prove this hypoth-

esis, but the results nonetheless present a valuable insight into using least-squares

optimization to derive an emitter’s location based on multiple bearing recordings.

The goals of this research were met with the development, testing, and validation

of a hardware prototype, software framework, and successful bearing prediction tech-

nique. Furthermore, the failed location prediction hypothesis provides insight and a

starting point for future research in that area.

96

www.manaraa.com

6.3 Research Significance

If DWAPs are to employ directional antennae and benefit from the benefits that

directionality provides, they must necessarily overcome the problem of target bearing

radiolocation. This research provides a feasible methodology to overcome this lim-

itation, as well as a software framework for implementing it and conducting future

research.

The bearing prediction performance that is demonstrated in this research is suf-

ficient to facilitate target detection, connection, approach, and attack. These capa-

bilities are a stepping-stone to implementing long-range directional DWAPs that are

capable of tracking targets and performing wireless CNO over large areas.

Even though the location prediction performed poorly, there is value in demon-

strating the performance and limitations of performing location prediction using tri-

angulation and least-squares optimization of bearing predictions.

6.4 Future Work

This research builds a foundation for significant future research in the DWAP

field. Possible future research may include:

• Airborne Performance. The most direct extension of this research is to

move the prototype to a UAV platform and conduct similar experiments to

determine how much, if any, the bearing and location predictions improve.

• Intelligent RSSI Filtering. Eliminating beacons with RSSI values that

are small, relative to the rest of the captured beacons, could filter out reflected

RSSI readings. Another approach could include making multiple predictions if

there are high RSSI values at bearings that are significantly different.

97

www.manaraa.com

• Expanded Capture Positions for Location Prediction. Location pre-

diction using the least-squares approach described in Section 5.4.3 is expected

to have higher accuracy if the data is captured from positions that surround

the targets; this approach is likely to cut the large error predictions down sub-

stantially.

• Antenna Testing. Different directional antennae have different radiation

patters and perform differently. Identifying the optimal antenna configuration

for a DWAP may be done by profiling the performance of multiple antenna

candidates.

• Mobile Target Tracking. With improvements in location prediction, mobile

Wi-Fi emitters may be tracked by continually generating bearing predictions

from different locations. Probe requests may also be included to track and

profile smartphones from a long distance and over a wide area.

• Swarming. Multiple DWAPs may conduct captures and generate independent

predictions which, when shared between them, may produce near real-time

location predictions. Other methods of localization, such as AOA, TOA, and

TDOA may be used to improve location predictions.

• Autonomy. An autonomous DWAP may conduct localizing functions within

predetermined parameters, such as remaining within a certain radius, seeking

out unsecured or low-secured WAPs, conducting automated site surveys, or

following a particular smartphone. With the many applications of UAV and

DWAP autonomy, research is necessary to determine how these functions might

best be performed.

98

www.manaraa.com

Appendix A. localizer Manual

Common between nearly all modules is module-tagged logging initialization, al-

lowing for simple and detailed logging throughout code execution. Logging occurs to

a localizer.log file, as well as to the console when executing in interactive mode.

A.1 Initial Installation

Before localizer can be used, it must be installed using the provided setup.py

installation script. If Python 3.5 and pip are installed, installing localizer is per-

formed typing the following code in the directory with setup.py:

$ pip install .

localizer requires root to manage the different capture modules, such as GPS,

GPIO, and setting the Wi-Fi interface in monitor mode. Once localizer and its de-

pendencies are installed, the help command shows what available program arguments

are available.

localizer -h

usage: localizer [-h] [-d] [-w WORKINGDIR] [-p] [-m MACS] [-ccw] [-s]

[--serve]

optional arguments:

-h, --help show this help message and exit

-d, --debug Make debug output print to the console. This flag may

also be set in the shell

-w WORKINGDIR, --workingdir WORKINGDIR

Set the parent directory for session experiments. If

blank, current directory is used.

-p, --process Process the files in the current directory, or a

provided working directory (-w)

99

www.manaraa.com

-m MACS, --macs MACS If processing, a file containing mac addresses to

filter on

-ccw, --counterclockwise

Set this flag if the captures were performed in a

counter-clockwise direction

-s, --shell Start the localizer shell

--serve Serve files from the working directory on port 80.

This flag may also be set in the shell

A.2 Interactive Shell

An operator enters the localizer shell by the command localizer -s, after

which they are greeted by an interactive prompt

$ localizer -s

Welcome to Localizer Shell...

/root:2018011..:wlan0:15s>

The shell has many commands that are listed with the help command

/root:2018011..:wlan0:15s> help

Documented commands (type help <topic>):

==

batch cd exit help process serve shell

capture debug get list quit set

/root:2018011..:wlan0:15s>

help followed by a command name gives details about that command (e.g., >

help batch).

100

www.manaraa.com

A.2.1 Parameters.

Getting a list of capture parameters and their values is performed with the get

command:

/root:2018011..:wlan0:15s> get

Parameters:

bearing: 0

channel: None

degrees: 360

duration: 15

focused: None

hop_dist: 2

hop_int: 0.183296

iface: wlan0

test: 20180118-03-53-15

Debug is False

HTTP server is False

/root:2018011..:wlan0:15s>

Capture parameters may be set with the set command, followed by the parameter

and its new value (e.g., > set channel 5).

A.2.2 Debug Logging.

Writing debug messages to the console may be toggled with the debug command

followed by a truth value, such as 1, True, On, etc (e.g., > debug on).

101

www.manaraa.com

A.2.3 HTTP Server.

A HTTP server is available to serve up capture files easily by using the serve

command followed by a truth value, such as 1, True, On, etc (e.g., > serve 1). This

starts a HTTP server on port 80 in the current working directory of localizer,

accessible from another computer at http://<localizer-ip-address>.

A.2.4 Wide Capture.

When an operator is ready to perform a wide capture, the capture command

initiates the capture process described in Section A.3. Following the capture, all

detected WAPs are displayed.

/root:2018011..:wlan0:15s> capture

Setting up threads : 100%|XXXXXX| 4/4 [00:01<00:00, 3.00it/s]

Capturing packets for 15s : 50%|XXXXXX| 8/16 [00:08<00:08, 1.00s/it

...

ssid bssid channel security strength method

1 <blank> 00:fe:c8:7d:ac:51 6 WPA -19 pchip

2 <blank> 00:fe:c8:7d:ac:54 6 WPA -21 pchip

3 <blank> 00:fe:c8:7d:ac:50 6 WPA -21 pchip

4 <blank> 00:fe:c8:7d:ac:52 6 WPA -21 pchip

...

A.2.5 Focused Capture.

Once a wide capture has been performed, the operator may perform a focused cap-

ture by using the capture command followed by a number corresponding to a WAP

in the displayed results (e.g., > capture 2). After the wide capture is performed,

the WAP table is updated with the new prediction.

102

www.manaraa.com

A.2.6 Connect.

The operator may connect to a detected WAP with the connect command fol-

lowed by a number corresponding to a WAP in the displayed results and followed

by a password, if the WAP is password protected (e.g., > connect 2 password123).

Once connected, localizer enters the connect shell. The only current command in

the connect shell is ping, which attempts to perform a ping through the connected

WAP.

A.3 Batch Capture

Batch captures are performed by entering batch mode from the interactive shell

with the batch command. The primary difference of batch capture mode is that

instead of interactively setting the capture parameters, parameters are imported from

capture configuration files using the import command. The capture configurations

used to capture experimental data are shown in Appendix D.

/root:2018011..:wlan0:15s> batch

You are now in batch processing mode. Type 'exit' to return

/root:batch> cd /capture

/capture:batch> import capture-3-test.conf

Found 1 batches

100%|XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX| 1/1 [00:00<00:00, 15.23it/s]

/capture:batch>

A.4 Batch Processing

Batch processing is performed from outside the localizer shells just discussed,

with the localizer executable directly using the -p parameter.

$ localizer -p

Found 103 unprocessed data sets

103

www.manaraa.com

Processing: 6%|XXX | 6/103 [00:19<05:16, 3.26s/it]

Batch processing recursively searches the provided directory, or current working

directory if none was provided, for all directories with unprocessed capture data.

When found, it spawns subprocesses to process all discovered unprocessed capture

data in parallel.

104

www.manaraa.com

Appendix B. localizer Source Code

B.1 Setup and Initialization Code

B.1.1 setup.py.

Python package sextuplets is used to install localizer on the system.

1 import sys

2

3 from setuptools import setup

4

5 if sys.version_info < (3,5):

6 sys.exit('Sorry, Python < 3.5 is not supported')

7

8 def readme():

9 with open('README.md') as f:

10 return f.read()

11

12 setup(

13 name='localizer',

14 version='0.1',

15 description="Signal Localizer: Data Gathering Tool for Radiolocation",

16 long_description=readme(),

17 url='https://github.com/elBradford/localizer',

18 author='Bradford',

19 packages=['localizer'],

20 install_requires=[

21 'pyshark',

22 'gpsd-py3',

23 'tqdm',

24 'pandas',

25 'scipy',

26 'numexpr',

27 'bottleneck',

28 'numpy',

29 'pigpio',

30 'python-dateutil',

31 'tabulate',

32 'wifi==0.8.0rc1',

33],

34 test_suite='nose.collector',

35 tests_require=['nose'],

36 entry_points={

37 'console_scripts': ['localizer=localizer.main:main'],

38 },

39 classifiers=[

40 "Environment :: Console",

41 "Operating System :: Unix",

42 "Topic :: Scientific/Engineering",

105

www.manaraa.com

43 "Programming Language :: Python :: 3.5",

44 "Intended Audience :: Science/Research"

45],

46)

B.1.2 localizer/main.py.

This module serves as bootstrap code for the project. Argument parsing enables

the different roles of the framework through passing different arguments from the

command line.

1 import argparse

2 from os import getcwd

3

4 import localizer

5

6

7 # STARTUP

8 def main():

9

10 parser = argparse.ArgumentParser()

11 me_group = parser.add_mutually_exclusive_group()

12 # TODO Implement command line capture and batch

13 # group_capture = me_group.add_argument_group('Capture')

14 # group_capture.add_argument("-c", "--capture")

15 parser.add_argument("-d", "--debug",

16 help="Make debug output print to the console. This flag

may also be set in the shell",↪→

17 action="store_true")

18 parser.add_argument("-w", "--workingdir",

19 help="Set the parent directory for session experiments.

If blank, current directory is used.",↪→

20 default=getcwd())

21 me_group.add_argument("-p", "--process",

22 help="Process the files in the current directory, or a

provided working directory (-w)",↪→

23 action="store_true")

24 parser.add_argument("-m", "--macs",

25 help="If processing, a file containing mac addresses to

filter on")↪→

26 parser.add_argument("-ccw", "--counterclockwise",

27 help="Set this flag if the captures were performed in a

counter-clockwise direction",↪→

28 action="store_true")

29 me_group.add_argument("-s", "--shell",

30 help="Start the localizer shell",

31 action="store_true")

32 parser.add_argument("--serve",

106

www.manaraa.com

33 help="Serve files from the working directory on port 80.

This flag may also be set in the shell",↪→

34 action="store_true")

35 args = parser.parse_args()

36

37 localizer.set_debug(args.debug)

38

39 # Validate provided directory

40 try:

41 localizer.set_working_dir(args.workingdir)

42 except ValueError as e:

43 print(e)

44 exit(1)

45

46 if args.serve:

47 localizer.set_serve(args.serve)

48

49 if args.macs:

50 args.macs = localizer.load_macs(args.macs)

51

52 # Shell Mode

53 if args.shell:

54 from localizer.shell import LocalizerShell

55 LocalizerShell(args.macs)

56

57 elif args.process:

58 from localizer import process

59 process.process_directory(args.macs, not args.counterclockwise)

60

61 elif args.serve:

62 import socket

63 input("Serving files from {} on {}:80, press any key to

exit".format(getcwd(), socket.gethostname()))↪→

64

65 else:

66 parser.print_help()

67

68

69 if __name__ == '__main__':

70 main()

B.1.3 localizer/ init .py.

This file contains initialization instructions for the localizer package, including

package global variables, logging centralization, and various utilities.

This file also has code for enabling a simple http server, useful for pulling captured

data from the prototype or DWAP.

107

www.manaraa.com

1 import atexit

2 import http.server

3 import logging

4 import os

5 import socketserver

6 from threading import Thread

7

8 from localizer.meta import Params

9

10 # Shared Variables

11 debug = False

12 serve = False

13

14 # Console colors

15 W = '\033[0m' # white (normal)

16 R = '\033[31m' # red

17 G = '\033[32m' # green

18 O = '\033[33m' # orange

19 B = '\033[34m' # blue

20 P = '\033[35m' # purple

21 C = '\033[36m' # cyan

22 GR = '\033[37m' # gray

23

24

25 # Set up logging

26 package_logger = logging.getLogger()

27 package_logger.setLevel(logging.DEBUG)

28 _console_handler = logging.StreamHandler()

29 _console_handler.setLevel(logging.WARNING)

30 _console_handler.setFormatter(logging.Formatter('%(name)s - %(levelname)s:

%(message)s'))↪→

31 package_logger.addHandler(_console_handler)

32

33 # Set up web server

34 PORT = 80

35 httpd = None

36 httpd_thread = None

37 socketserver.TCPServer.allow_reuse_address = True

38

39

40 def set_serve(value):

41 global serve

42 serve = value

43

44 if serve:

45 start_httpd()

46 else:

47 shutdown_httpd()

48

49

50 def restart_httpd():

51 shutdown_httpd()

108

www.manaraa.com

52 start_httpd()

53

54

55 def shutdown_httpd():

56 global httpd, httpd_thread

57

58 if httpd is not None:

59 package_logger.info("Shutting down http server")

60 httpd.shutdown()

61 httpd = None

62 httpd_thread.join()

63 httpd_thread = None

64

65

66 def start_httpd():

67 global httpd, httpd_thread

68 if httpd is not None or httpd_thread is not None:

69 shutdown_httpd()

70

71 package_logger.info("Starting http server in {}".format(os.getcwd()))

72 httpd = socketserver.TCPServer(("", PORT), QuietSimpleHTTPRequestHandler)

73 httpd_thread = Thread(target=httpd.serve_forever)

74 httpd_thread.daemon = True

75 httpd_thread.start()

76

77

78 # Working Directory

79 _working_dir = None

80

81

82 def set_working_dir(path):

83 global _working_dir

84

85 if path == _working_dir:

86 return

87

88 _current_dir = os.getcwd()

89

90 try:

91 # cd into directory

92 os.chdir(path)

93 _new_path = os.getcwd()

94

95 # Try to write and remove a tempfile to the directory

96 _tmpfile = os.path.join(_new_path, 'tmpfile')

97 with open(_tmpfile, 'w') as fp:

98 fp.write(" ")

99 os.remove(_tmpfile)

100

101 # restart httpd if it's running

102 if serve:

103 restart_httpd()

109

www.manaraa.com

104

105 _working_dir = _new_path

106 except (PermissionError, TypeError):

107 os.chdir(_current_dir)

108 raise ValueError("Cannot write to working directory '{}'".format(path))

109 except FileNotFoundError:

110 os.chdir(_current_dir)

111 raise ValueError("Invalid directory '{}'".format(path))

112

113

114 # A quiet implementation of SimpleHTTPRequestHandler

115 class QuietSimpleHTTPRequestHandler(http.server.SimpleHTTPRequestHandler):

116 def log_message(self, fmt, *args):

117 pass

118

119

120 def set_debug(value):

121 global debug, _console_handler

122 debug = value

123 if package_logger is not None:

124 if debug:

125 _console_handler.setLevel(logging.DEBUG)

126 else:

127 _console_handler.setLevel(logging.WARNING)

128

129 package_logger.info("Debug set to {}".format(value))

130

131

132 def load_macs(mac_path):

133 import csv

134 with open(mac_path, 'r', newline='') as mac_tsv:

135 csv_reader = csv.DictReader(mac_tsv, dialect="unix", delimiter='\t')

136 return [line['BSSID'] for line in csv_reader]

137

138

139 # /dev/null, send output from programs so they don't print to screen.

140 DN = open(os.devnull, 'w')

141 ERRLOG = open(os.devnull, 'w')

142 OUTLOG = open(os.devnull, 'w')

143

144

145 @atexit.register

146 def cleanup():

147 logging.shutdown()

110

www.manaraa.com

B.2 Utilities

B.2.1 localizer/meta.py.

This module contains a class definition for the basic unit of a capture, a Params

object. This object contains all the parameters needed for a capture to occur and

enforces strict range and value requirements on each parameter. This module also

contains miscellaneous meta-data and capture-related constants.

1 import datetime

2 import re

3 import time

4

5 from geomag import WorldMagneticModel

6

7 import localizer

8

9 # WIFI Constants

10 IEEE80211bg = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

11 IEEE80211bg_intl = IEEE80211bg + [12, 13, 14]

12 IEEE80211a = [36, 40, 44, 48, 52, 56, 60, 64, 149, 153, 157, 161]

13 IEEE80211bga = IEEE80211bg + IEEE80211a

14 IEEE80211bga_intl = IEEE80211bg_intl + IEEE80211a

15 TU = 1024/1000000 # 1 TU = 1024 usec

https://en.wikipedia.org/wiki/TU_(Time_Unit)↪→

16 STD_BEACON_INT = 100*TU

17 OPTIMAL_BEACON_INT = 179*TU

18 STD_CHANNEL_DISTANCE = 2

19

20

21 meta_csv_fieldnames = ['name',

22 'pass',

23 'path',

24 'iface',

25 'duration',

26 'hop_int',

27 'pos_lat',

28 'pos_lon',

29 'pos_alt',

30 'pos_lat_err',

31 'pos_lon_err',

32 'pos_alt_err',

33 'start',

34 'end',

35 'degrees',

36 'bearing',

37 'pcap',

38 'nmea',

111

www.manaraa.com

39 'coords',

40 'focused',

41 'guess',

42 'elapsed',

43 'num_guesses',

44 'guess_time',

45]

46

47

48 required_suffixes = {"nmea": ".nmea",

49 "pcap": ".pcapng",

50 "meta": "-capture.csv",

51 "coords": "-gps.csv",

52 }

53

54

55 capture_suffixes = {

56 "guess": "-guess.csv",

57 "results": "-results.csv",

58 "capture": "-capture.conf",

59 }

60

61 capture_suffixes.update(required_suffixes)

62

63

64 class Params:

65

66 VALID_PARAMS = ["iface",

67 "duration",

68 "degrees",

69 "bearing",

70 "hop_int",

71 "hop_dist",

72 "mac",

73 "macs",

74 "channel",

75 "focused",

76 "capture"]

77

78 def __init__(self,

79 iface=None,

80 duration=15.0,

81 degrees=360,

82 bearing=0,

83 hop_int=OPTIMAL_BEACON_INT,

84 hop_dist=STD_CHANNEL_DISTANCE,

85 macs=None,

86 channel=None,

87 focused=None,

88 capture=time.strftime('%Y%m%d-%H-%M-%S')):

89

90 # Default Values

112

www.manaraa.com

91 self._duration = self._degrees = self._bearing = self._hop_int =

self._hop_dist = self._macs = self._channel = self._focused =

self._capture = None

↪→

↪→

92 self._iface = iface

93 self.duration = duration

94 self.degrees = degrees

95 self.bearing_magnetic = bearing

96 self.hop_int = hop_int

97 self.hop_dist = hop_dist

98 self.macs = macs

99 self.channel = channel

100 self.focused = focused

101 self.capture = capture

102

103 @property

104 def iface(self):

105 return self._iface

106

107 @iface.setter

108 def iface(self, value):

109 from localizer import interface

110 if value in list(interface.get_interfaces()):

111 self._iface = value

112 else:

113 raise ValueError("Invalid interface: {}".format(value))

114

115 @property

116 def duration(self):

117 return self._duration

118

119 @duration.setter

120 def duration(self, value):

121 try:

122 if not isinstance(value, float):

123 value = float(value)

124 if value < 0:

125 raise ValueError()

126 self._duration = value

127 except ValueError:

128 raise ValueError("Invalid duration: {}; should be a float >=

0".format(value))↪→

129

130 @property

131 def degrees(self):

132 return self._degrees

133

134 @degrees.setter

135 def degrees(self, value):

136 try:

137 if not isinstance(value, int):

138 value = int(float(value))

139 self._degrees = value

113

www.manaraa.com

140 except ValueError as e:

141 raise ValueError("Invalid degrees: {}; should be an

int".format(value))↪→

142

143 @property

144 def bearing_magnetic(self):

145 return self._bearing

146

147 @bearing_magnetic.setter

148 def bearing_magnetic(self, value):

149 try:

150 if not isinstance(value, int):

151 value = int(float(value))

152 self._bearing = value % 360

153 except ValueError:

154 raise ValueError("Invalid bearing: {}; should be an

int".format(value))↪→

155

156 def bearing_true(self, lat, lon, alt=0, date=datetime.date.today()):

157 wmm = WorldMagneticModel()

158 declination = wmm.calc_mag_field(lat, lon, alt, date).declination

159 return self._bearing + declination

160

161 @property

162 def hop_int(self):

163 return self._hop_int

164

165 @hop_int.setter

166 def hop_int(self, value):

167 try:

168 if not isinstance(value, float):

169 value = round(float(value), 5)

170 if value < 0:

171 raise ValueError()

172 self._hop_int = value

173 except ValueError:

174 raise ValueError("Invalid hop interval: {}; should be a float >=

0".format(value))↪→

175

176 @property

177 def hop_dist(self):

178 return self._hop_dist

179

180 @hop_dist.setter

181 def hop_dist(self, value):

182 try:

183 if not isinstance(value, int):

184 value = int(value)

185 if value <= 0:

186 raise ValueError()

187 self._hop_dist = value

188 except ValueError:

114

www.manaraa.com

189 raise ValueError("Invalid hop distance: {}; should be an integer >

0".format(value))↪→

190

191 @property

192 def macs(self):

193 return self._macs

194

195 @macs.setter

196 def macs(self, value):

197 self._macs = []

198 if value:

199 self.add_mac(value)

200

201 def add_mac(self, value):

202 try:

203 # Check for string

204 if isinstance(value, str):

205 if self.validate_mac(value):

206 self._macs.append(value)

207 else:

208 raise ValueError

209 else:

210 # Try to treat value as an iterable

211 for mac in value:

212 if self.validate_mac(mac):

213 self._macs.append(mac)

214 else:

215 raise ValueError

216

217 except (ValueError, TypeError):

218 raise ValueError("Invalid mac address or list supplied; should be a

mac string or list of mac strings")↪→

219

220 @property

221 def channel(self):

222 return self._channel

223

224 @channel.setter

225 def channel(self, value):

226 try:

227 if value is None:

228 self._channel = value

229 else:

230 if not isinstance(value, int):

231 value = int(value)

232 if value <= 0:

233 raise ValueError()

234 self._channel = value

235 except ValueError:

236 raise ValueError("Invalid channel: {}; should be an integer >

0".format(value))↪→

237

115

www.manaraa.com

238 @property

239 def focused(self):

240 return self._focused

241

242 @focused.setter

243 def focused(self, value):

244 try:

245 if value is None:

246 self._focused = value

247 else:

248 if not isinstance(value, tuple) or len(value) != 2:

249 raise ValueError()

250 else:

251 _degrees = float(value[0])

252 if _degrees <= 0 or _degrees > 360:

253 raise ValueError()

254 _duration = float(value[1])

255 if _duration <= 0:

256 raise ValueError()

257

258 self._focused = (_degrees, _duration)

259 except ValueError:

260 raise ValueError("Invalid fine: {}; should be a tuple of length 2

(degrees[width], duration > 0)".format(value))↪→

261

262 @property

263 def capture(self):

264 return self._capture

265

266 @capture.setter

267 def capture(self, value):

268 self._capture = str(value)

269

270 # Validation functions

271 def validate_antenna(self):

272 return self.duration is not None and \

273 self.degrees is not None and \

274 self.bearing_magnetic is not None

275

276 def validate_gps(self):

277 return self.duration is not None

278

279 def validate_capture(self):

280 return self.iface is not None and \

281 self.duration is not None

282

283 def validate_wifi(self):

284 return self.iface is not None and \

285 self.duration is not None and \

286 self.hop_int is not None

287

288 @staticmethod

116

www.manaraa.com

289 def validate_mac(mac):

290 return re.match("[0-9a-f]{2}([-:])[0-9a-f]{2}(\\1[0-9a-f]{2}){4}$",

mac.lower())↪→

291

292 def validate(self):

293 return self.validate_antenna() and self.validate_gps() and

self.validate_wifi()↪→

294

295 def __str__(self):

296 retstr = "\n{} \tParameters: {}\n".format(localizer.G, localizer.W)

297 for param, val in sorted(self.__dict__.items()):

298

299 # If no macs are specified, don't print

300 if param is '_macs':

301 if len(val) > 0:

302 retstr += "\t Macs:\n"

303 for i, mac in enumerate(val):

304 retstr += "\t\t {:<15}{:<15}\n".format(i, mac)

305 else:

306 # Highlight 'None' values as red, except for 'test' which is

optional↪→

307 signifier = ''

308 if param is not '_capture' and val is None:

309 signifier = localizer.R

310 retstr += "\t {:<15}{}{:<15}{}\n".format(str(param[1:]) + ':

', signifier, str(val), localizer.W)↪→

311

312 return retstr

313

314 def copy(self):

315 from copy import deepcopy

316

317 return Params(

318 self.iface,

319 self.duration,

320 self.degrees,

321 self.bearing_magnetic,

322 self.hop_int,

323 self.hop_dist,

324 deepcopy(self.macs),

325 self.channel,

326 deepcopy(self.focused),

327 self.capture

328)

117

www.manaraa.com

B.2.2 localizer/locate.py.

The code in this module provides the interpolation methods described in chapter

V - this enables the software to take any number of captured beacons and make an

optimal guess as to the likely location of the emitter.

1 import numpy as np

2 import pandas as pd

3

4

5 def locate_naive(series):

6 if len(series) > 360:

7 series = series[np.arange(0, 360)]

8

9 return series.idxmax()

10

11

12 def locate_interpolate(series_concat, method):

13 series_inter = series_concat.interpolate(method=method)[np.arange(0, 360)]

14

15 return series_inter.idxmax()

16

17

18 def prep_for_interpolation(dataframe, bearing, x='bearing_magnetic', y='mw'):

19 """

20 Prepare a dataframe for interpolation by stripping extraneous columns and

converting it into a series↪→

21 """

22

23 # Stip columns and convert to series

24 df = dataframe.filter([x, y]).rename(columns={x: 'deg'}).sort_values('deg')

25 df['deg'] = np.round(df['deg'])

26

27 if df.duplicated('deg', keep=False).any():

28 df = df.groupby('deg', group_keys=False).apply(lambda z:

z.loc[z.mw.idxmax()])↪→

29

30 series_mid = df.set_index('deg').reindex(np.arange(0, 360)).iloc[:, 0]

31

32 if bearing >= 360:

33 # Extend to the left and right in order to ease interpolation

34 series_left = series_mid.copy()

35 series_left.index = np.arange(-360, 0)

36 series_right = series_mid.copy()

37 series_right.index = np.arange(360, 720)

38

39 series_concat = pd.concat([series_left, series_mid, series_right])

40

41 return series_concat

42 else:

118

www.manaraa.com

43 return series_mid

44

45

46 def interpolate(series, bearing):

47 """

48 Interpolate the given series in the best manner based on testing

49 :param series: Pandas Series

50 :param expand_to_360: Whether to expand series so that it properly wraps

around 360 degrees↪→

51 :return:

52 """

53

54 if 0 > len(series) <= 1:

55 _method = 'slinear'

56 elif 1 > len(series) <= 2:

57 _method = 'naive'

58 else:

59 _method = 'pchip'

60

61 _guess = _error_methods[_method](prep_for_interpolation(series, bearing))

62 return _guess, _method

63

64

65 _error_methods = {

66 'naive': locate_naive,

67 'quadratic': lambda series: locate_interpolate(series, 'quadratic'),

68 'cubic': lambda series: locate_interpolate(series, 'cubic'),

69 'linear': lambda series: locate_interpolate(series, 'linear'),

70 'slinear': lambda series: locate_interpolate(series, 'slinear'),

71 'barycentric': lambda series: locate_interpolate(series, 'barycentric'),

72 'krogh': lambda series: locate_interpolate(series, 'krogh'),

73 'piecewise_polynomial': lambda series: locate_interpolate(series,

'piecewise_polynomial'),↪→

74 'from_derivatives': lambda series: locate_interpolate(series,

'from_derivatives'),↪→

75 'pchip': lambda series: locate_interpolate(series, 'pchip'),

76 'akima': lambda series: locate_interpolate(series, 'akima'),

77 }

B.2.3 localizer/shell.py.

This module manages the shell, which provides the interactive shell and batch

capture roles. Multiple subclasses of the Cmd class provide the necessary features for

these roles.

1 import abc

2 import configparser

3 import csv

119

www.manaraa.com

4 import datetime

5 import logging

6 import os

7 import pprint

8 import subprocess

9 import time

10 from cmd import Cmd

11 from distutils.util import strtobool

12

13 from tqdm import tqdm

14

15 import localizer

16 from localizer import capture, process, meta, antenna, interface

17 from localizer.capture import APs

18

19 module_logger = logging.getLogger(__name__)

20 _file_handler = logging.FileHandler('localizer.log')

21 _file_handler.setLevel(logging.DEBUG)

22 _file_handler.setFormatter(logging.Formatter('%(asctime)s - %(name)s -

%(levelname)s: %(message)s'))↪→

23 module_logger.addHandler(_file_handler)

24 module_logger.info("****STARTING LOCALIZER****")

25

26

27 # Helper class for exit functionality

28 class ExitCmd(Cmd):

29 @staticmethod

30 def can_exit():

31 return True

32

33 def onecmd(self, line):

34 r = super().onecmd(line)

35 if r and (self.can_exit() or input('exit anyway ? (yes/no):') == 'yes'):

36 return True

37 return False

38

39 @staticmethod

40 def do_exit(_):

41 """Exit the interpreter."""

42 return True

43

44 @staticmethod

45 def do_quit(_):

46 """Exit the interpreter."""

47 return True

48

49 def emptyline(self):

50 pass

51

52

53 # Helper class for shell command functionality

54 class ShellCmd(Cmd, object):

120

www.manaraa.com

55 @staticmethod

56 def do_shell(args):

57 """Execute shell commands in the format 'shell <command>'"""

58 os.system(args)

59

60

61 # Helper class for debug toggling

62 class DebugCmd(Cmd, object):

63

64 @staticmethod

65 def do_debug(args):

66 """

67 Sets printing of debug information or shows current debug level if no

param given↪→

68

69 :param args: (Optional) Set new debug value.

70 :type args: str

71 """

72

73 args = args.split()

74 if len(args) > 0:

75 try:

76 val = strtobool(args[0])

77 localizer.set_debug(val)

78 except ValueError:

79 module_logger.error("Could not understand debug value

'{}'".format(args[0]))↪→

80

81 print("Debug is {}".format("ENABLED" if localizer.debug else "DISABLED"))

82

83

84 # Helper class for cd and directory functions

85 class DirCmd(Cmd, object, metaclass=abc.ABCMeta):

86

87 def do_cd(self, args):

88 """

89 cd into specified path

90

91 :param args: path to cd into

92 """

93

94 args = args.split()

95 if len(args) == 0:

96 print(os.getcwd())

97 else:

98 try:

99 localizer.set_working_dir(args[0])

100

101 except ValueError as e:

102 module_logger.error(e)

103 finally:

104 self._update_prompt()

121

www.manaraa.com

105

106 @abc.abstractmethod

107 def _update_prompt(self):

108 raise NotImplementedError("Subclasses of this class must implement

_update_prompt")↪→

109

110

111 # Base Localizer Shell Class

112 class LocalizerShell(ExitCmd, ShellCmd, DirCmd, DebugCmd):

113

114 def __init__(self, macs=None):

115 super().__init__()

116

117 self._modules = ["antenna", "gps", "capture", "wifi"]

118 self._params = meta.Params()

119 if macs:

120 self._params.macs = macs

121 self._aps = APs()

122

123 # Ensure we have root

124 if os.getuid() != 0:

125 print("Error: this application needs root to run correctly. Please

run as root.")↪→

126 exit(1)

127

128 # WiFi

129 module_logger.info("Initializing WiFi")

130 # Set interface to first

131 iface = interface.get_first_interface()

132 if iface is not None:

133 self._params.iface = iface

134 else:

135 module_logger.error("No valid wireless interface available")

136 exit(1)

137

138 # Start the command loop - these need to be the last lines in the

initializer↪→

139 self._update_prompt()

140 self.cmdloop('Welcome to Localizer Shell...')

141

142 @staticmethod

143 def do_serve(args):

144 """

145 Sets serving of the working directory over http:80, or shows current

setting if no param given↪→

146

147 :param args: (Optional) Set new serve value.

148 :type args: str

149 """

150

151 args = args.split()

152 if len(args) > 0:

122

www.manaraa.com

153 try:

154 val = strtobool(args[0])

155 localizer.set_serve(val)

156 except ValueError:

157 module_logger.error("Could not understand serve value

'{}'".format(args[0]))↪→

158

159 print("Serve is {}".format("ENABLED" if localizer.serve else "DISABLED"))

160 if localizer.serve:

161 print("HTTP serving working dir {} on port :{}".format(os.getcwd(),

localizer.PORT))↪→

162

163 @staticmethod

164 def do_process(_):

165 """

166 Process the results of all captures in the current working directory.

167 This command will look in each subdirectory of the current path for

unprocessed captures↪→

168 It looks for valid *-capture.csv, etc, and processes the files to build

*.results.csv↪→

169 """

170

171 _processed = process.process_directory()

172

173 print("Processed {} captures".format(_processed))

174

175 def do_set(self, args):

176 """

177 Set a named parameter. All parameters require a value except for iface

and macs↪→

178 - iface without a parameter will set the iface to the first system

wireless iface found↪→

179 - macs without a parameter will delete the mac address whitelist

180

181 :param args: Parameter name followed by new value

182 :type args: str

183 """

184

185 split_args = args.split()

186 if len(split_args) < 1:

187 module_logger.error("You must provide at least one

argument".format(args))↪→

188 elif len(split_args) == 1:

189 if split_args[0] == "iface":

190 iface = interface.get_first_interface()

191

192 if iface is not None:

193 self._params.iface = iface

194 else:

195 module_logger.error("There are no wireless interfaces

available.")↪→

196 elif split_args[0] == 'macs':

123

www.manaraa.com

197 self._params.macs = []

198 else:

199 module_logger.error("Parameters require a

value".format(split_args[0]))↪→

200 elif split_args[0] in meta.Params.VALID_PARAMS:

201 try:

202 param = split_args[0]

203 value = split_args[1]

204 # Validate certain parameters

205 if split_args[0] == "iface":

206 self._params.iface = value

207 elif param == "duration":

208 self._params.duration = value

209 elif param == "degrees":

210 self._params.degrees = value

211 elif param == "bearing":

212 self._params.bearing_magnetic = value

213 elif param == "hop_int":

214 self._params.hop_int = value

215 elif param == "hop_dist":

216 self._params.hop_dist = value

217 elif param == "mac":

218 self._params.add_mac(value)

219 elif param == "macs":

220 # Load macs from provided file

221 self._params.add_mac(localizer.load_macs(value))

222 elif param == "channel":

223 self._params.channel = value

224 elif param == "capture":

225 self._params.capture = value

226

227 print("Parameter '{}' set to '{}'".format(param, value))

228

229 except (ValueError, FileNotFoundError) as e:

230 module_logger.error(e)

231 else:

232 module_logger.error("Invalid parameter '{}'".format(split_args[0]))

233

234 self._update_prompt()

235

236 def do_get(self, args):

237 """

238 View the specified parameter or all parameters if none specified. May

also view system interface data↪→

239

240 :param args: param name, ifaces for system interfaces, or blank for all

parameters↪→

241 :type args: str

242 """

243

244 split_args = args.split()

245

124

www.manaraa.com

246 if len(split_args) >= 1:

247 if split_args[0] == "ifaces":

248 pprint.pprint(interface.get_interfaces())

249 elif split_args[0] == "params":

250 print(str(self._params))

251 elif split_args[0] == "bearing":

252 print("Current bearing: {}

degrees".format(antenna.bearing_current))↪→

253 else:

254 module_logger.error("Unknown parameter

'{}'".format(split_args[0]))↪→

255 else:

256 pprint.pprint(interface.get_interfaces())

257 print(str(self._params))

258 print("Debug is {}".format(localizer.debug))

259 print("HTTP server is {}".format(localizer.serve))

260

261 def do_list(self, _):

262 """

263 List any detected access points, their bearing, and whether they have

been scanned↪→

264 """

265

266 if self._aps:

267 print(self._aps)

268 else:

269 print("No detected aps, or scan hasn't been performed")

270

271 def do_capture(self, args):

272 """

273 Start the capture with the needed parameters set

274 """

275

276 split_args = args.split()

277

278 if len(split_args) >= 1 and int(split_args[0]) < len(self._aps):

279 # Build focused capture based on selected access point

280 _ap = self._aps[int(split_args[0])]

281 _prediction = _ap.bearing

282 _bearing = _prediction - capture.OPTIMAL_CAPTURE_DEGREES_FOCUSED/2

283 _duration =

antenna.FOCUSED_RATE[capture.OPTIMAL_CAPTURE_DEGREES_FOCUSED] *

capture.OPTIMAL_CAPTURE_DEGREES_FOCUSED / 360

↪→

↪→

284 _channel = _ap.channel

285 _bssid = _ap.bssid

286 _try_params = localizer.meta.Params(self._params.iface, _duration,

capture.OPTIMAL_CAPTURE_DEGREES_FOCUSED, _bearing, hop_int=0,

channel= _channel, macs=[_bssid])

↪→

↪→

287 module_logger.info("Setting capture to focused mode")

288 else:

289 _try_params = self._params

290

125

www.manaraa.com

291 if not _try_params.validate():

292 module_logger.error("You must set 'iface' and 'duration' parameters

first")↪→

293 else:

294 # Shutdown http server if it's on

295 localizer.shutdown_httpd()

296

297 module_logger.info("Starting capture")

298 try:

299 _result = capture.capture(_try_params,

reset=_try_params.bearing_magnetic)↪→

300 if _result:

301 _capture_path, _meta = _result

302

303 with open(os.path.join(_capture_path, _meta), 'rt') as

meta_csv:↪→

304 _meta_reader = csv.DictReader(meta_csv, dialect='unix')

305 meta = next(_meta_reader)

306

307 _, _, _, _aps = process.process_capture(meta, _capture_path,

write_to_disk=False, guess=True, macs=_try_params.macs)↪→

308 if len(self._aps):

309 self._aps.update(_aps)

310 else:

311 self._aps.aps = _aps

312 print(self._aps)

313 else:

314 raise RuntimeError("Capture failed")

315

316 except RuntimeError as e:

317 module_logger.error(e)

318

319 finally:

320 # Restart http server if it is supposed to be on

321 if localizer.serve:

322 localizer.start_httpd()

323

324 def do_connect(self, args):

325 """

326 Connect to the specified access point number from the list command with

the provided password.↪→

327 """

328 split_args = args.split()

329

330 if len(split_args) >= 2 and int(split_args[0]) < len(self._aps):

331 # Build focused capture based on selected access point

332 _ap = self._aps[int(split_args[0])]

333 _prediction = int(_ap.bearing)

334 # Set antenna to predicted bearing

335 antenna.AntennaThread.reset_antenna(_prediction)

336

337 # Connect to the access point

126

www.manaraa.com

338 try:

339 WiFiConnectShell(self._params.iface, _ap.ssid, split_args[1])

340 except ValueError as e:

341 module_logger.error(e)

342 else:

343 print("You must provide an AP number and a password")

344

345 @staticmethod

346 def do_batch(_):

347 """

348 Start batch mode

349 """

350

351 BatchShell()

352

353 def _update_prompt(self):

354 """

355 Update the command prompt based on the iface and duration parameters

356 """

357

358 elements = [localizer.GR + os.getcwd()]

359 if self._params.capture:

360 capture = (self._params.capture[:7] + '..') if

len(self._params.capture) > 9 else self._params.capture↪→

361 elements.append(localizer.G + capture)

362 if self._params.iface is not None:

363 elements.append(localizer.C + self._params.iface)

364 if self._params.duration > 0:

365 elements.append(localizer.GR + str(self._params.duration) + 's')

366

367 separator = localizer.W + ':'

368 self.prompt = separator.join(elements) + localizer.W + '> '

369

370

371 class BatchShell(ExitCmd, ShellCmd, DirCmd, DebugCmd):

372

373 def __init__(self):

374 super().__init__()

375

376 self._pause = True

377 self._batches = []

378

379 # Start the command loop - these need to be the last lines in the

initializer↪→

380 self._update_prompt()

381 self.cmdloop("You are now in batch processing mode. Type 'exit' to return

to the capture shell")↪→

382

383 def do_import(self, args):

384 """

385 Import all captures in the current directory, or the capture name

provided. Captures are files that end in -capture.conf↪→

127

www.manaraa.com

386

387 :param args: capture to import

388 :type args: str

389 """

390

391 _filenames = []

392

393 args = args.split()

394 # Check for provided filename

395 if len(args):

396 for arg in args:

397 if os.path.isfile(arg):

398 _filenames.append(arg)

399 else:

400 if os.path.isfile(arg + meta.capture_suffixes['capture']):

401 _filenames.append(arg + meta.capture_suffixes['capture'])

402 else:

403 # Get list of valid capture batches in current directory

404 _filenames = [file for file in next(os.walk('.'))[2] if

file.endswith(meta.capture_suffixes['capture'])]↪→

405

406 print("Found {} batches".format(len(_filenames)))

407

408 # Import captures from each batch

409 _count = 0

410 for batch in tqdm(_filenames):

411 try:

412 _name, _passes, _captures = BatchShell._parse_batch(batch)

413 self._batches.append((_name, _passes, _captures))

414 _count += 1

415 except ValueError as e:

416 module_logger.error(e)

417

418 logging.info("Imported {} batches".format(_count))

419

420 def complete_import(self, text, _, __, ___):

421 return [file for file in next(os.walk('.'))[2] if file.startswith(text)

and file.endswith(meta.capture_suffixes['capture'])]↪→

422

423 def do_capture(self, _):

424 """

425 Run all the imported captures

426 """

427

428 if not self._batches:

429 print("No batches have been imported")

430 else:

431 _total = 0

432 for _, _passes, _captures in self._batches:

433 _total += len(_captures)*_passes

434

435 _start_time = time.time()

128

www.manaraa.com

436 print("Starting batch of {} captures".format(_total))

437 _curr = 0

438 for _, _passes, _captures in self._batches:

439 _len_pass = len(str(_passes))

440 for cap in _captures:

441 for p in range(_passes):

442 print(localizer.R + "Capture {:>4}/{}\t\t{}

elapsed".format(_curr, _total,

datetime.timedelta(seconds=time.time()-_start_time))

+ localizer.W)

↪→

↪→

↪→

443 capture.capture(cap, str(p).zfill(_len_pass),

cap.bearing_magnetic)↪→

444 _curr += 1

445

446 print("Complete - total time elapsed:

{}".format(datetime.timedelta(seconds=time.time()-_start_time)))↪→

447

448 def do_get(self, _):

449 """

450 Print the captures

451 """

452

453 for _name, _passes, _captures in self._batches:

454 for cap in _captures:

455 print(cap)

456

457 print("Batch: {}; {} captures, {} passes each".format(_name,

len(_captures), _passes))↪→

458

459 print("Estimated total runtime:

{:0>8}".format(str(self._calculate_runtime())))↪→

460

461 def do_pause(self, args):

462 """

463 Pause between captures to allow for antenna calibration

464

465 :param args: True to pause between captures, False to continue to the

next capture immediately↪→

466 :type args: str

467 """

468

469 args = args.split()

470 if len(args) > 0:

471 try:

472 self._pause = strtobool(args[0])

473 except ValueError:

474 module_logger.error("Could not understand pause value

'{}'".format(args[0]))↪→

475

476 print("Pause is {}".format("ENABLED" if self._pause else "DISABLED"))

477

478 def do_clear(self, _):

129

www.manaraa.com

479 """

480 Clear all batches

481 """

482

483 self._batches = []

484

485 def _calculate_runtime(self):

486 """

487 Calculate an estimated runtime for the imported captures

488 :return: Estimated runtime

489 :rtype: int

490 """

491

492 _time = 0

493 for _, _passes, _captures in self._batches:

494 for cap in _captures:

495 _time_temp = ((cap.duration * _passes))

496

497 if cap.focused:

498 _nmacs = len(cap.macs)

499 _deg, _dur = cap.focused

500 _time_fine = (_deg * _dur) / 360

501 _time_fine *= _nmacs

502 _time_temp += _time_fine

503

504 _time += _time_temp

505

506 return datetime.timedelta(seconds=_time)

507

508

509 @staticmethod

510 def _parse_batch(file):

511 """

512 Import captures from the supplied batch file

513

514 :param file: Path to the file to import

515 :type file: str

516 :return: A tuple containing a passes value and a list containing captures

517 :rtype: (str, int, list)

518 """

519

520 _name = file[:file.find(meta.capture_suffixes['capture'])]

521 _captures = []

522

523 config = configparser.ConfigParser()

524 config.read(file, encoding='ascii')

525

526 if not len(config.sections()):

527 raise ValueError("Invalid capture config file: {}".format(file))

528

529 _passes = int(config['meta']['passes'])

530

130

www.manaraa.com

531 for section in config.sections():

532 if section == 'meta':

533 continue

534

535 cap = BatchShell._build_capture(config[section], config['meta'])

536 if cap:

537 _captures.append(cap)

538

539 print("Imported {}/{} captures from {} batch ({}

passes)".format(len(_captures), len(config.sections()) - 1, _name,

_passes))

↪→

↪→

540 return _name, _passes, _captures

541

542 @staticmethod

543 def _build_capture(capture_section, meta_section):

544 """

545 Use a dictionary from configparser to build a capture object

546

547 :param capture_section: A dictionary of key and values with capture

properties↪→

548 :type capture_section: dict

549 :param meta_section: A dictionary of key and values with default

properties↪→

550 :type meta_section: dict

551 :return: A Params object

552 :rtype: Params()

553 """

554

555 try:

556 if 'iface' in capture_section and capture_section['iface']:

557 _iface = capture_section['iface']

558 elif 'iface' in meta_section and meta_section['iface']:

559 _iface = meta_section['iface']

560 else:

561 _iface = interface.get_first_interface()

562 if not _iface:

563 raise ValueError("No valid interface provided or available on

system")↪→

564

565 if 'duration' in capture_section:

566 _duration = capture_section['duration']

567 elif 'duration' in meta_section:

568 _duration = meta_section['duration']

569 else:

570 _duration = capture.OPTIMAL_CAPTURE_DURATION

571

572 if 'degrees' in capture_section:

573 _degrees = capture_section['degrees']

574 elif 'degrees' in meta_section:

575 _degrees = meta_section['degrees']

576 else:

577 raise ValueError("No valid degrees")

131

www.manaraa.com

578

579 if 'bearing' in capture_section:

580 _bearing = capture_section['bearing']

581 elif 'bearing' in meta_section:

582 _bearing = meta_section['bearing']

583 else:

584 raise ValueError("No valid bearing")

585

586 if 'hop_int' in capture_section:

587 _hop_int = capture_section['hop_int']

588 elif 'hop_int' in meta_section:

589 _hop_int = meta_section['hop_int']

590 else:

591 _hop_int = interface.OPTIMAL_BEACON_INT

592

593 if 'hop_dist' in capture_section:

594 _hop_dist = capture_section['hop_dist']

595 elif 'hop_dist' in meta_section:

596 _hop_dist = meta_section['hop_dist']

597 else:

598 _hop_dist = interface.STD_CHANNEL_DISTANCE

599

600 if 'capture' in capture_section:

601 _capture = capture_section['capture']

602 elif 'capture' in meta_section:

603 _capture = meta_section['capture']

604 else:

605 raise ValueError("No valid capture name")

606

607 if 'macs' in capture_section:

608 _macs = capture_section['macs'].split(',')

609 elif 'macs' in meta_section:

610 _macs = meta_section['macs'].split(',')

611 else:

612 _macs = None

613

614 if 'channel' in capture_section:

615 _channel = capture_section['channel']

616 elif 'channel' in meta_section:

617 _channel = meta_section['channel']

618 else:

619 _channel = None

620

621 if 'focused' in capture_section:

622 _focused = tuple(capture_section['focused'].split(','))

623 elif 'focused' in meta_section:

624 _focused = tuple(meta_section['focused'].split(','))

625 else:

626 _focused = None

627

628 cap = localizer.meta.Params(_iface, _duration, _degrees, _bearing,

_hop_int, _hop_dist, _macs, _channel, _focused, _capture)↪→

132

www.manaraa.com

629 # Validate iface

630 module_logger.debug("Setting iface {}".format(_iface))

631 cap.iface = _iface

632

633 return cap

634

635 except ValueError as e:

636 module_logger.warning(e)

637 return None

638

639 def _update_prompt(self):

640 self.prompt = localizer.GR + os.getcwd() + localizer.W + ":" +

localizer.G + "batch" + localizer.W + "> "↪→

641

642

643 class WiFiConnectShell(ExitCmd, ShellCmd, DirCmd, DebugCmd):

644 connect_timeout = 5

645

646 def __init__(self, iface, ap, password):

647 super().__init__()

648

649 self._iface = iface

650 self._ap = ap

651 self._pw = password

652

653 # Kill any existing wpa_supplicant instance

654 subprocess.run(['killall', 'wpa_supplicant'])

655

656 self._mode = interface.get_interface_mode(self._iface)

657 # Take interface out of monitor mode

658 if self._mode != "managed":

659 interface.set_interface_mode(self._iface, "managed")

660

661 print("Connecting to {}...".format(self._ap))

662 # Try to connect - timeout if otherwise

663 self._proc = subprocess.Popen(['/bin/bash', '-c', 'wpa_supplicant -i {}

-c <(wpa_passphrase {} {})'.format(self._iface, self._ap, self._pw)],

stdout=subprocess.PIPE, stderr=subprocess.PIPE)

↪→

↪→

664 # Wait for process to output "File: ..." to stderr and then set flag for

other threads↪→

665 curr_line = ""

666 try:

667 _time_waited = 0

668 while "CTRL-EVENT-CONNECTED" not in curr_line:

669 curr_line = self._proc.stdout.readline().decode()

670 module_logger.debug("wpa_supplicant: {}".format(curr_line))

671 time.sleep(.1)

672 _time_waited += .1

673 if _time_waited >= WiFiConnectShell.connect_timeout:

674 raise TimeoutError()

675 except TimeoutError:

676 self.do_disconnect(None)

133

www.manaraa.com

677 raise ValueError("Timed out connecting to {}".format(self._ap))

678

679 print("Getting IP address, waiting 10 seconds...")

680 try:

681 subprocess.run(['dhclient', self._iface], timeout=10)

682 except subprocess.TimeoutExpired:

683 self.do_disconnect(None)

684 raise ValueError("Timed out getting IP address")

685

686 # Start the command loop - these need to be the last lines in the

initializer↪→

687 self._update_prompt()

688 self.cmdloop("You are now connected to {}. Type 'disconnect' to

disconnect and return to the capture shell".format(self._ap))↪→

689

690 def do_ping(self, args):

691 """

692 Send a ping request to 8.8.8.8 or a provided IP to check internet

connectivity↪→

693 """

694 _ip = "8.8.8.8"

695

696 arg_split = args.split()

697 if len(arg_split) > 0:

698 _ip = arg_split[0]

699

700 with subprocess.Popen(['ping', _ip, '-c', str(3), '-I', self._iface],

stdout=subprocess.PIPE, bufsize=1, universal_newlines=True) as _proc:↪→

701 for line in _proc.stdout:

702 print(line, end='')

703

704 def do_disconnect(self, _):

705 """

706 Disconnect from the current AP

707 """

708 self._proc.kill()

709 subprocess.run(['killall', 'wpa_supplicant'])

710 interface.set_interface_mode(self._iface, self._mode)

711 return self.do_exit(None)

712

713 def _update_prompt(self):

714 self.prompt = localizer.GR + os.getcwd() + localizer.W + ":" +

localizer.G + "connect:" + self._ap + localizer.W + "> "↪→

134

www.manaraa.com

B.3 Capture & Processing

B.3.1 localizer/capture.py.

This module is orchestrates all the capture-related modules, such as localizer/antenna.py,

localizer/gps.py, and localizer/interface.py, found in sections B.3.2, B.3.3,

and B.3.4 respectively.

The function of this code is described in detail in 3.4.2.

1 import datetime

2 import re

3 import time

4

5 from geomag import WorldMagneticModel

6

7 import localizer

8

9 # WIFI Constants

10 IEEE80211bg = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

11 IEEE80211bg_intl = IEEE80211bg + [12, 13, 14]

12 IEEE80211a = [36, 40, 44, 48, 52, 56, 60, 64, 149, 153, 157, 161]

13 IEEE80211bga = IEEE80211bg + IEEE80211a

14 IEEE80211bga_intl = IEEE80211bg_intl + IEEE80211a

15 TU = 1024/1000000 # 1 TU = 1024 usec

https://en.wikipedia.org/wiki/TU_(Time_Unit)↪→

16 STD_BEACON_INT = 100*TU

17 OPTIMAL_BEACON_INT = 179*TU

18 STD_CHANNEL_DISTANCE = 2

19

20

21 meta_csv_fieldnames = ['name',

22 'pass',

23 'path',

24 'iface',

25 'duration',

26 'hop_int',

27 'pos_lat',

28 'pos_lon',

29 'pos_alt',

30 'pos_lat_err',

31 'pos_lon_err',

32 'pos_alt_err',

33 'start',

34 'end',

35 'degrees',

36 'bearing',

37 'pcap',

38 'nmea',

135

www.manaraa.com

39 'coords',

40 'focused',

41 'guess',

42 'elapsed',

43 'num_guesses',

44 'guess_time',

45]

46

47

48 required_suffixes = {"nmea": ".nmea",

49 "pcap": ".pcapng",

50 "meta": "-capture.csv",

51 "coords": "-gps.csv",

52 }

53

54

55 capture_suffixes = {

56 "guess": "-guess.csv",

57 "results": "-results.csv",

58 "capture": "-capture.conf",

59 }

60

61 capture_suffixes.update(required_suffixes)

62

63

64 class Params:

65

66 VALID_PARAMS = ["iface",

67 "duration",

68 "degrees",

69 "bearing",

70 "hop_int",

71 "hop_dist",

72 "mac",

73 "macs",

74 "channel",

75 "focused",

76 "capture"]

77

78 def __init__(self,

79 iface=None,

80 duration=15.0,

81 degrees=360,

82 bearing=0,

83 hop_int=OPTIMAL_BEACON_INT,

84 hop_dist=STD_CHANNEL_DISTANCE,

85 macs=None,

86 channel=None,

87 focused=None,

88 capture=time.strftime('%Y%m%d-%H-%M-%S')):

89

90 # Default Values

136

www.manaraa.com

91 self._duration = self._degrees = self._bearing = self._hop_int =

self._hop_dist = self._macs = self._channel = self._focused =

self._capture = None

↪→

↪→

92 self._iface = iface

93 self.duration = duration

94 self.degrees = degrees

95 self.bearing_magnetic = bearing

96 self.hop_int = hop_int

97 self.hop_dist = hop_dist

98 self.macs = macs

99 self.channel = channel

100 self.focused = focused

101 self.capture = capture

102

103 @property

104 def iface(self):

105 return self._iface

106

107 @iface.setter

108 def iface(self, value):

109 from localizer import interface

110 if value in list(interface.get_interfaces()):

111 self._iface = value

112 else:

113 raise ValueError("Invalid interface: {}".format(value))

114

115 @property

116 def duration(self):

117 return self._duration

118

119 @duration.setter

120 def duration(self, value):

121 try:

122 if not isinstance(value, float):

123 value = float(value)

124 if value < 0:

125 raise ValueError()

126 self._duration = value

127 except ValueError:

128 raise ValueError("Invalid duration: {}; should be a float >=

0".format(value))↪→

129

130 @property

131 def degrees(self):

132 return self._degrees

133

134 @degrees.setter

135 def degrees(self, value):

136 try:

137 if not isinstance(value, int):

138 value = int(float(value))

139 self._degrees = value

137

www.manaraa.com

140 except ValueError as e:

141 raise ValueError("Invalid degrees: {}; should be an

int".format(value))↪→

142

143 @property

144 def bearing_magnetic(self):

145 return self._bearing

146

147 @bearing_magnetic.setter

148 def bearing_magnetic(self, value):

149 try:

150 if not isinstance(value, int):

151 value = int(float(value))

152 self._bearing = value % 360

153 except ValueError:

154 raise ValueError("Invalid bearing: {}; should be an

int".format(value))↪→

155

156 def bearing_true(self, lat, lon, alt=0, date=datetime.date.today()):

157 wmm = WorldMagneticModel()

158 declination = wmm.calc_mag_field(lat, lon, alt, date).declination

159 return self._bearing + declination

160

161 @property

162 def hop_int(self):

163 return self._hop_int

164

165 @hop_int.setter

166 def hop_int(self, value):

167 try:

168 if not isinstance(value, float):

169 value = round(float(value), 5)

170 if value < 0:

171 raise ValueError()

172 self._hop_int = value

173 except ValueError:

174 raise ValueError("Invalid hop interval: {}; should be a float >=

0".format(value))↪→

175

176 @property

177 def hop_dist(self):

178 return self._hop_dist

179

180 @hop_dist.setter

181 def hop_dist(self, value):

182 try:

183 if not isinstance(value, int):

184 value = int(value)

185 if value <= 0:

186 raise ValueError()

187 self._hop_dist = value

188 except ValueError:

138

www.manaraa.com

189 raise ValueError("Invalid hop distance: {}; should be an integer >

0".format(value))↪→

190

191 @property

192 def macs(self):

193 return self._macs

194

195 @macs.setter

196 def macs(self, value):

197 self._macs = []

198 if value:

199 self.add_mac(value)

200

201 def add_mac(self, value):

202 try:

203 # Check for string

204 if isinstance(value, str):

205 if self.validate_mac(value):

206 self._macs.append(value)

207 else:

208 raise ValueError

209 else:

210 # Try to treat value as an iterable

211 for mac in value:

212 if self.validate_mac(mac):

213 self._macs.append(mac)

214 else:

215 raise ValueError

216

217 except (ValueError, TypeError):

218 raise ValueError("Invalid mac address or list supplied; should be a

mac string or list of mac strings")↪→

219

220 @property

221 def channel(self):

222 return self._channel

223

224 @channel.setter

225 def channel(self, value):

226 try:

227 if value is None:

228 self._channel = value

229 else:

230 if not isinstance(value, int):

231 value = int(value)

232 if value <= 0:

233 raise ValueError()

234 self._channel = value

235 except ValueError:

236 raise ValueError("Invalid channel: {}; should be an integer >

0".format(value))↪→

237

139

www.manaraa.com

238 @property

239 def focused(self):

240 return self._focused

241

242 @focused.setter

243 def focused(self, value):

244 try:

245 if value is None:

246 self._focused = value

247 else:

248 if not isinstance(value, tuple) or len(value) != 2:

249 raise ValueError()

250 else:

251 _degrees = float(value[0])

252 if _degrees <= 0 or _degrees > 360:

253 raise ValueError()

254 _duration = float(value[1])

255 if _duration <= 0:

256 raise ValueError()

257

258 self._focused = (_degrees, _duration)

259 except ValueError:

260 raise ValueError("Invalid fine: {}; should be a tuple of length 2

(degrees[width], duration > 0)".format(value))↪→

261

262 @property

263 def capture(self):

264 return self._capture

265

266 @capture.setter

267 def capture(self, value):

268 self._capture = str(value)

269

270 # Validation functions

271 def validate_antenna(self):

272 return self.duration is not None and \

273 self.degrees is not None and \

274 self.bearing_magnetic is not None

275

276 def validate_gps(self):

277 return self.duration is not None

278

279 def validate_capture(self):

280 return self.iface is not None and \

281 self.duration is not None

282

283 def validate_wifi(self):

284 return self.iface is not None and \

285 self.duration is not None and \

286 self.hop_int is not None

287

288 @staticmethod

140

www.manaraa.com

289 def validate_mac(mac):

290 return re.match("[0-9a-f]{2}([-:])[0-9a-f]{2}(\\1[0-9a-f]{2}){4}$",

mac.lower())↪→

291

292 def validate(self):

293 return self.validate_antenna() and self.validate_gps() and

self.validate_wifi()↪→

294

295 def __str__(self):

296 retstr = "\n{} \tParameters: {}\n".format(localizer.G, localizer.W)

297 for param, val in sorted(self.__dict__.items()):

298

299 # If no macs are specified, don't print

300 if param is '_macs':

301 if len(val) > 0:

302 retstr += "\t Macs:\n"

303 for i, mac in enumerate(val):

304 retstr += "\t\t {:<15}{:<15}\n".format(i, mac)

305 else:

306 # Highlight 'None' values as red, except for 'test' which is

optional↪→

307 signifier = ''

308 if param is not '_capture' and val is None:

309 signifier = localizer.R

310 retstr += "\t {:<15}{}{:<15}{}\n".format(str(param[1:]) + ':

', signifier, str(val), localizer.W)↪→

311

312 return retstr

313

314 def copy(self):

315 from copy import deepcopy

316

317 return Params(

318 self.iface,

319 self.duration,

320 self.degrees,

321 self.bearing_magnetic,

322 self.hop_int,

323 self.hop_dist,

324 deepcopy(self.macs),

325 self.channel,

326 deepcopy(self.focused),

327 self.capture

328)

B.3.2 localizer/antenna.py.

1 import atexit

2 import logging

3 import math

4 import threading

141

www.manaraa.com

5 import time

6 from subprocess import run

7

8 import pigpio

9

10 module_logger = logging.getLogger(__name__)

11

12 # Always start due north (magnetic) or change this variable

13 bearing_default = 0

14 bearing_current = bearing_default

15 bearing_max = 720

16 bearing_min = -360

17

18 # Constants

19 # Reset Rate Curve

20 # From https://mycurvefit.com/

21 # 0 20

22 # 90 7

23 # 180 5

24 # 360 4

25 get_reset_rate = lambda x: 3.235294 + (20 - 3.235294) / (1 + (x / 34.68111) **

1.29956)↪→

26 RESET_RATE = [get_reset_rate(x) for x in range(1080)]

27 get_focused_rate = lambda x: -4 + (20 + 4) / (1 + (x / 180) ** 0.48542683)

28 FOCUSED_RATE = [get_focused_rate(x) for x in range(360)]

29 #-4. 20. 180. 0.48542683

30

31 # Default number of steps per radian

32 steps_per_revolution = 200

33 degrees_per_step = 360 / steps_per_revolution

34 microsteps_per_step = 32

35 microsteps_per_revolution = steps_per_revolution*microsteps_per_step*2

36 degrees_per_microstep = degrees_per_step / microsteps_per_step

37 # Set up GPIO

38 PUL_min = 18

39 DIR_min = 23

40 ENA_min = 24

41

42

43 # PIGPIOD bootstrap

44 # Try to start pigpiod locally

45 try:

46 run(['pigpiod'], timeout=3)

47 pi = pigpio.pi()

48 except FileNotFoundError:

49 # pigpiod is not installed on this system, try connecting to remote instance

50 pi = pigpio.pi('192.168.137.61', 8888)

51

52 if not pi.connected:

53 raise Exception("Need to have pigpiod running")

54

55 pi.set_mode(PUL_min, pigpio.OUTPUT)

142

www.manaraa.com

56 pi.write(PUL_min, pigpio.LOW)

57 pi.set_mode(DIR_min, pigpio.OUTPUT)

58 pi.set_mode(ENA_min, pigpio.OUTPUT)

59 pi.write(ENA_min, pigpio.HIGH)

60

61

62 class AntennaThread(threading.Thread):

63

64 def __init__(self, response_queue, event_flag, duration, degrees, bearing,

reset=None):↪→

65

66 # Set up thread

67 super().__init__()

68

69 module_logger.info("Starting Stepper Thread")

70

71 self.daemon = True

72 self._response_queue = response_queue

73 self._event_flag = event_flag

74 self._duration = duration

75 self._degrees = degrees

76 self._bearing = bearing

77 self._reset = reset

78

79 def run(self):

80 global bearing_current

81

82 module_logger.info("Executing Stepper Thread")

83

84 # Point the antenna in the right direction

85 AntennaThread.reset_antenna(self._bearing, self._degrees)

86

87 # Indicate readiness

88 self._response_queue.put('r')

89

90 # Wait for the synchronization flag

91 module_logger.info("Waiting for synchronization flag")

92 self._event_flag.wait()

93

94 _start_time, _stop_time = self.rotate(self._degrees, self._duration)

95 bearing_current += self._degrees

96

97 module_logger.info("Rotated antenna {} degrees for {:.2f}s"

98 .format(self._degrees, _stop_time - _start_time))

99

100 # Put results on queue

101 self._response_queue.put((_start_time, _stop_time))

102

103 # Pause for a moment to reduce drift

104 time.sleep(.5)

105

106 if self._reset is not None:

143

www.manaraa.com

107 # Reset antenna for next test, assuming next test has same width as

current↪→

108 AntennaThread.reset_antenna(self._reset, self._degrees)

109

110 @staticmethod

111 def reset_antenna(bearing=bearing_default, degrees=0):

112 global bearing_current

113

114 _travel = AntennaThread.determine_best_path(bearing, degrees)

115

116 # Check to see if new bearing is within 0.1

117 if not math.isclose(bearing_current, bearing, abs_tol=0.1) and _travel !=

0:↪→

118 _travel_duration = RESET_RATE[abs(_travel)]

119 module_logger.info(

120 "Resetting antenna {} degrees (from {} to {})".format(_travel,

bearing_current, bearing_current + _travel))↪→

121 AntennaThread.rotate(_travel, _travel_duration)

122 bearing_current += _travel

123 return True

124

125 return False

126

127 @staticmethod

128 def determine_best_path(new_bearing, degrees):

129 """

130 Return an optimized path to arrive at the provided bearing based on how

far the travel is and the current state↪→

131 of the antenna.

132

133 :param new_bearing: New bearing to set the antenna to

134 :param degrees: How far will the antenna be traveling from this bearing

135 :return: An optimized (equivalent) bearing to set the antenna

136 """

137

138 global bearing_current

139

140

141 _edge_case = bool(new_bearing == bearing_current % 360)

142 if _edge_case and (bearing_current >= bearing_max or bearing_current <=

bearing_min):↪→

143 _travel = new_bearing - bearing_current

144 else:

145 # Use algorithm tested and optimized in tests/antenna_motion.py

146 _travel = 180 - (540 + (bearing_current - new_bearing)) % 360

147 _proposed_new_bearing = bearing_current + _travel

148 if _proposed_new_bearing + degrees >= bearing_max:

149 _travel = _travel - 360

150 elif _proposed_new_bearing <= bearing_min:

151 _travel = 360 - _travel

152

153 return _travel

144

www.manaraa.com

154

155 @staticmethod

156 def rotate(degrees, duration):

157 """

158 Rotate by degrees and duration

159

160 :param degrees: Number of degrees to rotate

161 :type degrees: int

162 :param duration: Time to take for rotation for 360 degrees

163 :type duration: float

164 :return: start, end

165 :rtype: tuple

166 """

167

168 pi.wave_clear()

169

170 if degrees < 0:

171 pi.write(DIR_min, 1)

172 degrees = - degrees

173 else:

174 pi.write(DIR_min, 0)

175

176 _frequency = microsteps_per_revolution/duration

177

178 if degrees > 6:

179 _ramp1 = 1 # degrees

180 _ramp1_frequency = _frequency / 4

181 _ramp1_pulses = round(_ramp1 / degrees_per_microstep)

182

183 _ramp2 = 1 # degrees

184 _ramp2_frequency = _frequency / 2

185 _ramp2_pulses = round(_ramp2 / degrees_per_microstep)

186

187 _ramp3 = 1 # degrees

188 _ramp3_frequency = 3 * _frequency / 4

189 _ramp3_pulses = round(_ramp3 / degrees_per_microstep)

190

191 _pulses = round((degrees - 2*(_ramp1 + _ramp2 + _ramp3)) /

degrees_per_microstep)↪→

192

193 _ramp = [[_ramp1_frequency, _ramp1_pulses],

194 [_ramp2_frequency, _ramp2_pulses],

195 [_ramp3_frequency, _ramp3_pulses],

196 [_frequency, _pulses],

197 [_ramp3_frequency, _ramp3_pulses],

198 [_ramp2_frequency, _ramp2_pulses],

199 [_ramp1_frequency, _ramp1_pulses]]

200

201 else:

202 _pulses = round(degrees/degrees)

203 _ramp = [[_frequency/3, _pulses]]

204

145

www.manaraa.com

205 _duration = 0

206 for r in _ramp:

207 assert r[0] > 0, "degrees: {}, duration: {}, ramp freq:

{}".format(degrees, duration, r[0])↪→

208 assert r[1] > 0, "degrees: {}, duration: {}, ramp pulses:

{}".format(degrees, duration, r[0])↪→

209 _duration += int(1000000 / r[0]) * r[1]

210

211 _duration *= 2

212 _duration /= 1000000

213

214 _chain, _wid = AntennaThread.generate_ramp(_ramp)

215

216 _time_start = time.time()

217 pi.wave_chain(_chain)

218 _time_end = _time_start + _duration

219

220 while time.time() < _time_end:

221 time.sleep(.1)

222

223 try:

224 for wid in _wid:

225 if wid:

226 pi.wave_delete(wid)

227 except pigpio.error as e:

228 module_logger.error(e)

229

230 return _time_start, _time_end

231

232 @staticmethod

233 def antenna_set_en(val):

234 """

235 Set the antenna enable pin

236 :param val: Enable value to send

237 :type val: bool

238 """

239

240 pi.write(ENA_min, val)

241

242 @staticmethod

243 def generate_ramp(ramp):

244 """Generate ramp wave forms.

245 ramp: List of [Frequency, Steps]

246 """

247 pi.wave_clear() # clear existing waves

248 length = len(ramp) # number of ramp levels

249 wid = [-1] * length

250

251 # Generate a wave per ramp level

252 for i in range(length):

253 frequency = ramp[i][0]

254 micros = int(1000000 / frequency)

146

www.manaraa.com

255 wf1 = pigpio.pulse(1 << PUL_min, 0, micros) # pulse on

256 wf2 = pigpio.pulse(0, 1 << PUL_min, micros) # pulse off

257 wf = [wf1, wf2]

258 pi.wave_add_generic(wf)

259 wid[i] = pi.wave_create()

260

261 # Generate a chain of waves

262 chain = []

263 for i in range(length):

264 steps = ramp[i][1]

265 x = steps & 255

266 y = steps >> 8

267 chain += [255, 0, wid[i], 255, 1, x, y]

268

269 return chain, wid # Return chain.

270

271

272 @atexit.register

273 def cleanup_gpio():

274 """

275 Cleanup - ensure GPIO is cleaned up properly

276 """

277

278 module_logger.info("Cleaning up GPIO")

279 pi.wave_clear()

B.3.3 localizer/gps.py.

1 import csv

2 import logging

3 import os

4 import shutil

5 import threading

6 import time

7 from subprocess import Popen

8

9 import gpsd

10

11 module_logger = logging.getLogger(__name__)

12

13

14 # GPS Update frequency - Depends on hardware - eg BU-353-S4

http://usglobalsat.com/store/gpsfacts/bu353s4_gps_facts.html↪→

15 _gps_update_frequency = 1

16

17

18 def _initialize():

19 # initialize GPS information

20 if shutil.which("gpsd") is None:

21 module_logger.warning("Required system tool 'gpsd' is not installed")

22 return False

147

www.manaraa.com

23 if shutil.which("gpspipe") is None:

24 module_logger.warning("Required system tool 'gpspipe' is not installed.

On Debian systems it is found in the package 'gpsd-clients'")↪→

25 return False

26

27 gpsd.connect()

28

29 try:

30 gpsd.device()

31 module_logger.info("GPS device connected: {}".format(gpsd.device()))

32 except (KeyError, IndexError):

33 module_logger.warning("GPS device failed to initialize, please make sure

that gpsd can see gps data")↪→

34 return False

35

36 return True

37

38

39 _initialize()

40

41

42 class GPSThread(threading.Thread):

43

44 def __init__(self, response_queue, event_flag, duration, nmea_output,

csv_output):↪→

45 """

46 GPS Thread that, when started and when the flag is raised, records the

time and GPS location↪→

47 """

48

49 if not _initialize():

50 raise RuntimeError("GPS Modules could not initialize")

51

52 super().__init__()

53

54 module_logger.info("Starting GPS Logging Thread")

55

56 self.daemon = True

57 self._response_queue = response_queue

58 self._event_flag = event_flag

59 self._duration = duration

60 self._nmea_output = nmea_output

61 self._csv_output = csv_output

62

63 def run(self):

64 module_logger.info("Executing gps thread")

65

66 gps_sentences = {}

67

68 # Wait for synchronization signal

69 self._event_flag.wait()

70

148

www.manaraa.com

71 _start_time = time.time()

72 gpspipe = Popen(['gpspipe', '-r', '-uu', '-o', self._nmea_output])

73

74 # Capture gps data for <duration> seconds

75 t = time.time() + self._duration

76 while time.time() < t:

77 gps_sentences[time.time()] = gpsd.get_current()

78 time.sleep(_gps_update_frequency)

79

80 module_logger.info("Terminating gpspipe")

81 gpspipe.terminate()

82

83 _end_time = time.time()

84 module_logger.info("Captured gps data for {:.2f}s (expected

{}s)".format(_end_time-_start_time, self._duration))↪→

85

86 # Set up average coordinate

87 _avg_lat = 0

88 _avg_lon = 0

89 _avg_alt = 0

90 _avg_lat_err = 0

91 _avg_lon_err = 0

92 _avg_alt_err = 0

93 _lat_err_count = 0

94 _lon_err_count = 0

95 _alt_err_count = 0

96

97 # Write GPS coordinates to CSV

98 with open(self._csv_output, 'w', newline='') as nmea_csv:

99

100 fieldnames = ['timestamp', 'lat', 'lon', 'alt', 'lat_err',

'lon_error', 'alt_error']↪→

101 nmea_csv_writer = csv.DictWriter(nmea_csv, dialect="unix",

fieldnames=fieldnames)↪→

102 nmea_csv_writer.writeheader()

103

104 for tstamp, msg in gps_sentences.items():

105

106 _avg_lat += msg.lat

107 _avg_lon += msg.lon

108 _avg_alt += msg.alt

109

110 # Retrieve error rates

111 lat_err = None

112 lon_err = None

113 alt_err = None

114 if 'y' in msg.error:

115 lat_err = msg.error['y']

116 _lat_err_count += 1

117 if 'x' in msg.error:

118 lon_err = msg.error['x']

119 _lon_err_count += 1

149

www.manaraa.com

120 if 'v' in msg.error:

121 alt_err = msg.error['v']

122 _alt_err_count += 1

123

124 nmea_csv_writer.writerow({fieldnames[0]: tstamp,

125 fieldnames[1]: msg.lat,

126 fieldnames[2]: msg.lon,

127 fieldnames[3]: msg.alt,

128 fieldnames[4]: lat_err,

129 fieldnames[5]: lon_err,

130 fieldnames[6]: alt_err})

131

132 # Finish calculating coordinate average

133 try:

134 _avg_lat /= len(gps_sentences)

135 _avg_lon /= len(gps_sentences)

136 _avg_alt /= len(gps_sentences)

137 _avg_lat_err /= _lat_err_count

138 _avg_lon_err /= _lon_err_count

139 _avg_alt_err /= _alt_err_count

140 except ZeroDivisionError:

141 pass

142

143 # Confirm capture file contains gps coordinates

144 if os.path.isfile(self._nmea_output) and

os.path.isfile(self._csv_output):↪→

145 module_logger.info("Successfully captured gps nmea data")

146 else:

147 module_logger.error("Could not capture gps nmea data")

148

149 # send gps data back

150 self._response_queue.put((_avg_lat, _avg_lon, _avg_alt, _avg_lat_err,

_avg_lon_err, _avg_alt_err))↪→

151 self._response_queue.put((_start_time, _end_time))

B.3.4 localizer/interface.py.

1 import atexit

2 import logging

3 import re

4 import shutil

5 import threading

6 import time

7 from subprocess import call, run, PIPE, CalledProcessError

8

9 from tqdm import tqdm

10

11 import localizer

12 from localizer.meta import OPTIMAL_BEACON_INT, STD_CHANNEL_DISTANCE, IEEE80211bg

13

14 module_logger = logging.getLogger(__name__)

150

www.manaraa.com

15

16 # Make sure required system tools are installed

17 if shutil.which("iwconfig") is None:

18 module_logger.error("Required system tool 'iwconfig' is not installed")

19 exit(1)

20 if shutil.which("ifconfig") is None:

21 module_logger.error("Required system tool 'ifconfig' is not installed")

22 exit(1)

23 if shutil.which("iwlist") is None:

24 module_logger.error("Required system tool 'iwlist' is not installed")

25 exit(1)

26

27

28 def set_interface_mode(iface, mode):

29 """

30 Uses ifconfig and iwconfig to put a device into specified mode (eg monitor,

managed, etc).↪→

31

32 :param iface: Name of interface to set the mode on

33 :type iface: str

34 :param mode: New mode to set the interface to

35 :type mode: str

36 :return: Returns whether setting the interface mode was successful

37 :rtype: bool

38 """

39

40 try:

41 interfaces = get_interfaces()

42 if iface not in interfaces:

43 raise ValueError("Interface {} is not a valid interface;

{}".format(iface, interfaces.keys()))↪→

44

45 module_logger.info("Enabling {} mode on {}".format(mode, iface))

46 call(['ifconfig', iface, 'down'], stdout=localizer.DN,

stderr=localizer.DN)↪→

47 call(['iwconfig', iface, 'mode', mode], stdout=localizer.DN,

stderr=localizer.DN)↪→

48 call(['ifconfig', iface, 'up'], stdout=localizer.DN, stderr=localizer.DN)

49

50 # Validate mode of interface

51 interfaces = get_interfaces()

52 if interfaces[iface]["mode"] == mode:

53 module_logger.info("Finished enabling {} mode on {}".format(mode,

iface))↪→

54 return True

55 else:

56 raise ValueError("Failed putting interface {} into {} mode; interface

currently in {} mode"↪→

57 .format(iface, mode, interfaces[iface]["mode"]))

58

59 except (KeyError, ValueError, CalledProcessError) as e:

60 module_logger.error(e)

151

www.manaraa.com

61 return False

62

63

64 def get_interface_mode(iface):

65 """

66 Get the current mode of an interface

67

68 :param iface: Interface to query for mode

69 :type iface: str

70 :return: Mode of interface

71 :rtype: str

72 """

73

74 try:

75 return get_interfaces()[iface]["mode"]

76 except KeyError:

77 module_logger.error("No interface '{}'".format(iface))

78 return None

79

80

81 def get_interfaces():

82 """

83 Queries iwconfig and builds a dictionary of interfaces and their properties

84

85 :return: A dictionary with keys as interface name (str) and value as

dictionary of key/value pairs↪→

86 :rtype: dict

87 """

88

89 try:

90 proc = run(['iwconfig'], stdout=PIPE, stderr=localizer.DN)

91

92 # Loop through all the lines and build a dictionary of interfaces

93 interfaces = {}

94 current_interface = None

95 for line in proc.stdout.split(b'\n'):

96 line = line.decode().rstrip()

97 if len(line.strip()) == 0:

98 continue #

Continue on blank lines↪→

99 if line[0] != ' ': #

Doesn't start with space↪→

100 current_line = line.split(' ') #

Prepare the line↪→

101 current_interface = current_line[0] # Parse the

interface↪→

102 interfaces[current_interface] = {} # Set up

new interface in dictionary↪→

103 line = ' '.join(current_line[1:]) # Reset

current line without interface↪→

104 if current_interface is not None: # Grab

values and put them in dict↪→

152

www.manaraa.com

105 line = line.strip().lower()

106 line_values = line.strip().split(' ') # Split by

two spaces↪→

107 for value in line_values: # Step

through each value on the first line↪→

108 value = value.strip() # Clean

up our value↪→

109 if value.find(':') == -1: # Check

for colon-separated values↪→

110 interfaces[current_interface][value] = None # Put in

dict↪→

111 else: # Put

key/value in dict↪→

112 value_split = value.split(':')

113 interfaces[current_interface][value_split[0].strip()] =

value_split[1].strip()↪→

114 else:

115 raise ValueError("Unexpected iwconfig response: {}".format(line))

116

117 return interfaces

118

119 except (ValueError, IndexError) as e:

120 module_logger.error(e)

121 return None

122

123

124 def get_first_interface():

125 """

126 Returns the name of the first interface, or None if none are present on the

system.↪→

127

128 :return: First wlan interface

129 :rtype: str

130 """

131

132 ifaces = get_interfaces()

133 if ifaces is not None and len(list(ifaces)) > 0:

134 return list(ifaces)[0]

135 else:

136 return None

137

138

139 def get_channel(iface):

140 """

141 Returns the channel the specified interface is on, or zero if it can't be

determined↪→

142

143 :param iface: Interface to query for channel

144 :type iface: str

145 :return: Channel

146 :rtype: int

147 """

153

www.manaraa.com

148

149 proc = run(['iwlist', iface, 'channel'], stdout=PIPE, stderr=PIPE)

150

151 # Respond with actual

152 lines = proc.stdout

153 match = re.search('(?<=\(Channel\s)(\d{1,2})', lines.decode())

154 if match is not None:

155 return match.group()

156 else:

157 return 0

158

159

160 def set_channel(iface, channel):

161 """

162 Sets the channel of the specified interface

163

164 :param iface: Interface to set the channel

165 :type iface: str

166 :param channel: Channel number to set the interface to

167 :type channel: str

168 :return: True for success, False for failure

169 :rtype: bool

170 """

171

172 try:

173 call(['iwconfig', iface, 'channel', channel], stdout=localizer.DN,

stderr=localizer.DN)↪→

174 return True

175 except CalledProcessError:

176 return False

177

178

179 class ChannelThread(threading.Thread):

180 def __init__(self, event_flag, iface, duration, hop_int=OPTIMAL_BEACON_INT,

response_queue=None, distance=STD_CHANNEL_DISTANCE, init_chan=None,

channels=IEEE80211bg):

↪→

↪→

181 """

182 Wait for commands on the queue and asynchronously change channels of

wireless interface with specified timing.↪→

183

184 :param command_queue queue.Queue: A queue to read commands in the format

(iface, iterations, hop_int)↪→

185 :param channels list[int]: A list of channels to iterate over

186 """

187

188 super().__init__()

189

190 module_logger.info("Starting Channel Hopper Thread")

191

192 self.daemon = True

193 self._event_flag = event_flag

194 self._iface = iface

154

www.manaraa.com

195 self._duration = duration

196 self._hop_int = hop_int

197 self._distance = distance

198 self._response_queue = response_queue

199 self._channels = channels

200

201 # Validate initial channel, if given

202 self._init_chan = init_chan

203 if self._init_chan and self._init_chan not in self._channels:

204 raise ValueError("If you specify an initial channel, it must be in

the list of channels")↪→

205

206 # Ensure we are in monitor mode

207 if get_interface_mode(self._iface) != "monitor":

208 set_interface_mode(self._iface, "monitor")

209 assert(get_interface_mode(self._iface) == "monitor")

210

211 def run(self):

212

213 _chan_len = len(self._channels)

214

215 # Build local channel str list for speed

216 _channels = [str(channel) for channel in self._channels]

217

218 # Initial channel position - will cycle through all in _channels

219 if self._init_chan:

220 _chan = self._channels.index(self._init_chan)

221 else:

222 _chan = 0

223 set_channel(self._iface, _channels[_chan]) # Set channel to first

channel↪→

224

225 # Wait for synchronization signal

226 self._event_flag.wait()

227

228 _start_time = time.time()

229 _stop_time = _start_time + self._duration

230

231 # Only hop channels if we have a list of channels to hop, and our

duration is greater than 0↪→

232 if self._hop_int > 0 and len(self._channels) > 1:

233

234 # HOP CHANNELS

https://github.com/elBradford/snippets/blob/master/chanhop.sh↪→

235 while _stop_time > time.time():

236 time.sleep(self._hop_int)

237 _chan = (_chan + self._distance) % _chan_len

238 set_channel(self._iface, _channels[_chan])

239

240 else:

241 time.sleep(_stop_time - time.time())

242

155

www.manaraa.com

243 _end_time = time.time()

244

245 if self._response_queue is not None:

246 self._response_queue.put((_start_time, _end_time))

247 module_logger.info("Hopped {} channels for {:.2f}s (expected {}s)"

248 .format(len(self._channels), _end_time-_start_time,

self._duration))↪→

249

250

251 @atexit.register

252 def cleanup():

253 """

254 Cleanup - ensure all devices are no longer in monitor mode

255 """

256

257 ifaces = get_interfaces()

258 ifaces_to_cleanup = [iface for iface in ifaces if ifaces[iface]["mode"] ==

"monitor"]↪→

259

260 if ifaces_to_cleanup:

261 module_logger.info("Cleaning up all monitored interfaces")

262 for iface in tqdm(ifaces_to_cleanup, desc="{:<35}".format("Restoring

ifaces to managed mode")):↪→

263 set_interface_mode(iface, "managed")

B.3.5 localizer/process.py.

1 import csv

2 import logging

3 import os

4 import time

5 from concurrent import futures

6 from datetime import date

7

8 import pandas as pd

9 import pyshark

10 from dateutil import parser

11 from geomag import WorldMagneticModel

12 from tqdm import tqdm

13

14 from localizer import locate

15 from localizer.meta import meta_csv_fieldnames, capture_suffixes,

required_suffixes↪→

16

17 module_logger = logging.getLogger(__name__)

18

19

20 def process_capture(meta, path, write_to_disk=False, guess=False, clockwise=True,

macs=None):↪→

21 """

22 Process a captured data set

156

www.manaraa.com

23 :param meta: meta dict containing capture results

24 :param write_to_disk: bool designating whether to write to disk

25 :param guess: bool designating whether to return a table of guessed

bearings for detected BSSIDs↪→

26 :param clockwise: direction antenna was moving during the capture,

27 :param macs: list of macs to filter on

28 :return: (_beacon_count, _results_path):

29 """

30

31 module_logger.info("Processing capture (meta: {})".format(str(meta)))

32

33 _beacon_count = 0

34 _beacon_failures = 0

35

36 # Correct bearing to compensate for magnetic declination

37 _declination = WorldMagneticModel()\

38 .calc_mag_field(float(meta[meta_csv_fieldnames[6]]),

39 float(meta[meta_csv_fieldnames[7]]),

40 date=date.fromtimestamp(float(meta["start"])))\

41 .declination

42

43 # Read results into a DataFrame

44 # Build columns

45 _default_columns = ['capture',

46 'pass',

47 'duration',

48 'hop-rate',

49 'timestamp',

50 'bssid',

51 'ssid',

52 'encryption',

53 'cipher',

54 'auth',

55 'ssi',

56 'channel',

57 'bearing_magnetic',

58 'bearing_true',

59 'lat',

60 'lon',

61 'alt',

62 'lat_err',

63 'lon_error',

64 'alt_error',

65]

66

67 _rows = []

68 _pcap = os.path.join(path, meta[meta_csv_fieldnames[16]])

69

70 # Build filter string

71 _filter = 'wlan[0] == 0x80'

72 # Override any provide mac filter list if we have one in the capture metadata

73 if meta_csv_fieldnames[19] in meta and meta[meta_csv_fieldnames[19]]:

157

www.manaraa.com

74 macs = [meta[meta_csv_fieldnames[19]]]

75 if macs:

76 _mac_string = ' and ('

77 _mac_strings = ['wlan.bssid == ' + mac for mac in macs]

78 _mac_string += ' or '.join(_mac_strings)

79 _mac_string += ')'

80 _filter += _mac_string

81

82 packets = pyshark.FileCapture(_pcap, display_filter=_filter,

keep_packets=False, use_json=True)↪→

83

84 for packet in packets:

85

86 try:

87 # Get time, bssid & db from packet

88 pbssid = packet.wlan.bssid

89 ptime = parser.parse(packet.sniff_timestamp).timestamp()

90 pssid = next((tag.ssid for tag in packet.wlan_mgt.tagged.all.tag if

hasattr(tag, 'ssid')), None)↪→

91 pssi = int(packet.wlan_radio.signal_dbm) if

hasattr(packet.wlan_radio, 'signal_dbm') else

int(packet.radiotap.dbm_antsignal)

↪→

↪→

92 pchannel = next((int(tag.current_channel) for tag in

packet.wlan_mgt.tagged.all.tag if hasattr(tag,

'current_channel')), None)

↪→

↪→

93 if not pchannel:

94 pchannel = int(packet.wlan_radio.channel) if

hasattr(packet.wlan_radio, 'channel') else

int(packet.radiotap.channel.freq)

↪→

↪→

95

96 # Determine AP security, if any

https://ccie-or-null.net/2011/06/22/802-11-beacon-frames/↪→

97 pencryption = None

98 pcipher = None

99 pauth = None

100

101 _cipher_tree = None

102 _auth_tree = None

103

104 # Parse Security Details

105 # Check for MS WPA tag

106 _ms_wpa = next((i for i, tag in

enumerate(packet.wlan_mgt.tagged.all.tag) if hasattr(tag,

'wfa.ie.wpa.version')), None)

↪→

↪→

107 if _ms_wpa is not None:

108 pencryption = "WPA"

109

110 if hasattr(packet.wlan_mgt.tagged.all.tag[_ms_wpa].wfa.ie.wpa,

'akms.list'):↪→

111 _auth_tree = packet.wlan_mgt.tagged.all.tag[_ms_wpa].wfa.ie. c
wpa.akms.list.akms_tree↪→

112

158

www.manaraa.com

113 if hasattr(packet.wlan_mgt.tagged.all.tag[_ms_wpa].wfa.ie.wpa,

'ucs.list'):↪→

114 _cipher_tree = packet.wlan_mgt.tagged.all.tag[_ms_wpa].wfa. c
ie.wpa.ucs.list.ucs_tree↪→

115

116 # Check for RSN Tag

117 _rsn = next((i for i, tag in

enumerate(packet.wlan_mgt.tagged.all.tag) if hasattr(tag,

'rsn')), None)

↪→

↪→

118 if _rsn is not None:

119 pencryption = "WPA"

120

121 if hasattr(packet.wlan_mgt.tagged.all.tag[_rsn].rsn, 'akms.list')

and _auth_tree is None:↪→

122 _auth_tree = packet.wlan_mgt.tagged.all.tag[_rsn].rsn.akms. c
list.akms_tree↪→

123

124 if hasattr(packet.wlan_mgt.tagged.all.tag[_rsn].rsn, 'pcs.list')

and _cipher_tree is None:↪→

125 _cipher_tree = packet.wlan_mgt.tagged.all.tag[_rsn].rsn.pcs. c
list.pcs_tree↪→

126

127 # Parse _auth_tree

128 if _auth_tree:

129 try:

130 _type = _auth_tree.type == '2'

131 except AttributeError:

132 _type = next((_node.type for _node in _auth_tree if

hasattr(_node, 'type') and (_node.type == '2' or

_node.type == '3')), False)

↪→

↪→

133

134 if _type == '3':

135 pauth = "FT"

136 elif _type == '2':

137 pauth = "PSK"

138

139 # Parse _cipher_tree

140 if _cipher_tree:

141 _types = []

142 try:

143 _types.append(_cipher_tree.type)

144 except AttributeError:

145 _types += [_node.type for _node in _cipher_tree if

hasattr(_node, 'type')]↪→

146

147 if _types:

148 _types_str = []

149 for _type in _types:

150 if _type == '4':

151 _types_str.append("CCMP")

152 elif _type == '2':

153 _types_str.append("TKIP")

159

www.manaraa.com

154 pcipher = "+".join(_types_str)

155

156 if not pencryption:

157 # WEP

158 pencryption = "WEP" if packet.wlan_mgt.fixed.all. c
capabilities_tree.has_field("privacy") and

packet.wlan_mgt.fixed.all.capabilities_tree.privacy == 1 else

"Open"

↪→

↪→

↪→

159 if pencryption == "WEP":

160 pcipher = "WEP"

161

162 except AttributeError as e:

163 module_logger.warning("Failed to parse packet: {}".format(e))

164 _beacon_failures += 1

165 continue

166

167 # Antenna correlation

168 # Compute the timespan for the rotation, and use the relative packet time

to determine↪→

169 # where in the rotation the packet was captured

170 # This is necessary to have a smooth antenna rotation with microstepping

171 total_time = float(meta["end"]) - float(meta["start"])

172 pdiff = ptime - float(meta["start"])

173 if pdiff <= 0:

174 pdiff = 0

175

176 cw = 1 if clockwise else -1

177

178 pprogress = pdiff / total_time

179 pbearing_magnetic = (cw * pprogress * float(meta["degrees"]) +

float(meta["bearing"])) % 360↪→

180 pbearing_true = (pbearing_magnetic + _declination) % 360

181

182 _rows.append([

183 meta[meta_csv_fieldnames[0]],

184 meta[meta_csv_fieldnames[1]],

185 meta[meta_csv_fieldnames[4]],

186 meta[meta_csv_fieldnames[5]],

187 ptime,

188 str(pbssid),

189 str(pssid),

190 pencryption,

191 pcipher,

192 pauth,

193 pssi,

194 pchannel,

195 pbearing_magnetic,

196 pbearing_true,

197 meta[meta_csv_fieldnames[6]],

198 meta[meta_csv_fieldnames[7]],

199 meta[meta_csv_fieldnames[8]],

200 meta[meta_csv_fieldnames[9]],

160

www.manaraa.com

201 meta[meta_csv_fieldnames[10]],

202 meta[meta_csv_fieldnames[11]],

203])

204

205 _beacon_count += 1

206

207 _results_df = pd.DataFrame(_rows, columns=_default_columns)

208 # Add mw column

209 _results_df.loc[:, 'mw'] = dbm_to_mw(_results_df['ssi'])

210 module_logger.info("Completed processing {} beacons ({}

failures)".format(_beacon_count, _beacon_failures))↪→

211

212 # If asked to guess, return list of bssids and a guess as to their bearing

213 if guess:

214 _columns = ['ssid', 'bssid', 'channel', 'security', 'strength', 'method',

'bearing']↪→

215 _rows = []

216

217 with futures.ProcessPoolExecutor() as executor:

218

219 _guess_processes = {}

220

221 for names, group in _results_df.groupby(['ssid', 'bssid']):

222 _channel = group.groupby('channel').count()['capture'].idxmax()

223 _encryption = pd.unique(group['encryption'])[0]

224 # _cipher = pd.unique(group['cipher'])[0]

225 # _auth = pd.unique(group['auth'])[0]

226 _strength = group['ssi'].max()

227 if not names[0]:

228 names = ('<blank>', names[1])

229

230 _row = [names[0], names[1], _channel, _encryption, _strength]

231 _guess_processes[executor.submit(locate.interpolate, group,

int(meta['degrees']))] = _row↪→

232

233 for future in futures.as_completed(_guess_processes):

234 _row = _guess_processes[future]

235 _guess, _method = future.result()

236 _rows.append(_row + [_method, _guess])

237

238 guess = pd.DataFrame(_rows, columns=_columns).sort_values('strength',

ascending=False)↪→

239

240 # If a path is given, write the results to a file

241 if write_to_disk:

242 _results_path = os.path.join(path, time.strftime('%Y%m%d-%H-%M-%S') +

"-results" + ".csv")↪→

243 _results_df.to_csv(_results_path, sep=',', index=False)

244 module_logger.info("Wrote results to {}".format(_results_path))

245 write_to_disk = _results_path

246

247 return _beacon_count, _results_df, write_to_disk, guess

161

www.manaraa.com

248

249

250 def _check_capture_dir(files):

251 """

252 Check whether the list of files has the required files in it to be considered

a capture directory↪→

253

254 :param files: Files to check

255 :type files: list

256 :return: True if the files indicate a capture path, false otherwise

257 :rtype: bool

258 """

259

260 for suffix in required_suffixes.values():

261 if not any(file.endswith(suffix) for file in files):

262 return False

263

264 return True

265

266

267 def _check_capture_processed(files):

268 """

269 Check whether the list of files has already been processed

270

271 :param files: Files to check

272 :type files: list

273 :return: True if the files indicate a capture has been processed already,

false otherwise↪→

274 :rtype: bool

275 """

276

277 if any(file.endswith(capture_suffixes["results"]) for file in files):

278 return True

279

280 return False

281

282

283 def _get_capture_meta(files):

284 """

285 Get the capture meta file path from list of files

286

287 :param files: Files to check

288 :type files: list

289 :return: Filename of meta file

290 :rtype: str

291 """

292

293 for file in files:

294 if file.endswith(capture_suffixes["meta"]):

295 return file

296

297 return None

162

www.manaraa.com

298

299

300 def process_directory(macs=None, clockwise=True):

301 """

302 Process entire directory - will search subdirectories for required files and

process them if not already processed↪→

303

304 :param macs: list of mac addresses to filter on

305 :type macs: list[str]

306 :param clockwise: Direction of antenna travel

307 :type clockwise: bool

308 :return: The number of directories processed

309 :rtype: int

310 """

311

312 # Walk through each subdirectory of working directory

313 module_logger.info("Building list of directories to process")

314

315 with futures.ProcessPoolExecutor() as executor:

316

317 _processes = {}

318 _results = 0

319

320 for root, dirs, files in os.walk(os.getcwd()):

321 if not _check_capture_dir(files):

322 continue

323 elif _check_capture_processed(files):

324 continue

325 else:

326 # Add meta file to list

327 _file = _get_capture_meta(files)

328 assert _file is not None

329 _path = os.path.join(root, _file)

330

331 with open(_path, 'rt') as meta_csv:

332 _meta_reader = csv.DictReader(meta_csv, dialect='unix')

333 meta = next(_meta_reader)

334

335 _processes[executor.submit(process_capture, meta, root, True,

False, clockwise, macs)] = _path↪→

336

337 print("Found {} unprocessed data sets".format(len(_processes)))

338

339 if _processes:

340 with tqdm(total = len(_processes), desc = "Processing") as _pbar:

341 for future in futures.as_completed(_processes):

342 _beacon_count, _, _, _ = future.result()

343 _results += _beacon_count

344 _pbar.update(1)

345

346 print("Processed {} packets in {} directories".format(_results,

len(_processes)))↪→

163

www.manaraa.com

347

348

349 def dbm_to_mw(dbm):

350 return 10**(dbm/10)

164

www.manaraa.com

Appendix C. Utilities

C.1 Sigmoid Model: model.py

1 from matplotlib import pyplot as plt

2 from scipy.optimize import curve_fit

3

4

5 def symmetric_sigmoid(x, a, b, c, d):

6 return a + (b - a) / (1 + (x / c) ** d)

7

8 # 0 20

9 # 90 7

10 # 180 5

11 # 360 4

12

13 x = [0,90,180,360]

14 y = [20,10,8,6]

15

16 best_vals, _ = curve_fit(symmetric_sigmoid, x, y)

17

18 get_reset_rate = lambda x: symmetric_sigmoid(x, *tuple(best_vals))

19

20 RESET_RATE = [get_reset_rate(x) for x in range(1080)]

21

22 ax = plt.gca()

23 ax.plot(range(1080), RESET_RATE)

24 ax.set_xlim([0,1080])

25 plt.show()

26 print(best_vals)

C.2 Coprime Hop Interval Generator: generate hop int.py

1 from math import gcd, ceil, floor

2

3 TU = 1024/1000000 # 1 TU = 1024 usec

https://en.wikipedia.org/wiki/TU_(Time_Unit)↪→

4 STD_BEACON_SCALE = 100

5 DEFAULT_START = STD_BEACON_SCALE/10

6 DEFAULT_END = STD_BEACON_SCALE*2

7

8 def coprime_rate_generator(start=DEFAULT_START, end=DEFAULT_END):

9 """

10 Generate a list of coprime rates that can be used as hop rates that minimize

synchronization with standard beacon rate of 100TU↪→

11

12 :param target: The beacon rate to find alternative rates that are co-prime

(no synchronization)↪→

13 :type target: int

14 :param high_scaler: Multiplied by the target to set an upper limit

165

www.manaraa.com

15 :type high_scaler: float

16 :return: List of coprimes

17 :rtype: list

18 """

19

20 _results = {}

21 # Generate an upper limit

22 for i in range(floor(start), ceil(end)):

23 if gcd(i, STD_BEACON_SCALE) == 1:

24 _results[i] = round(i*TU, 5)

25

26 return sorted(_results.items())

27

28

29 # Script can be run standalone

30 if __name__ == "__main__":

31 import argparse

32

33 parser = argparse.ArgumentParser(description="Generate a list of coprimes")

34 parser.add_argument("start",

35 help="The start of the list to search for coprimes",

36 nargs='?',

37 type=float,

38 default=DEFAULT_START)

39 parser.add_argument("end",

40 help="The end of the list to search for coprimes",

41 nargs='?',

42 type=float,

43 default=DEFAULT_END)

44 arguments = parser.parse_args()

45

46 print(coprime_rate_generator(arguments.start, arguments.end))

166

www.manaraa.com

Appendix D. localizer Capture Configurations

The following configurations were used for each of the treatments described in

Chapter IV.

D.1 Treatment 1a: discovery-duration-capture.conf

1 [meta]

2 passes = 30

3 degrees = 360.0

4 bearing = 0.0

5 hop_int = 0.13312

6 process = False

7

8 [1]

9 duration = 5

10 capture = discovery-duration-05

11

12 [2]

13 duration = 10

14 capture = discovery-duration-10

15

16 [3]

17 duration = 15

18 capture = discovery-duration-15

19

20 [4]

21 duration = 30

22 capture = discovery-duration-30

D.2 Treatment 1b: discovery-duration-capture-2.conf

1 [meta]

2 passes = 45

3 iface =

4 degrees = 360.0

5 bearing = 0.0

6 hop_int = 0.18330

7 process = False

8

9 [1]

10 duration = 10

11 capture = discovery-duration-10

12

13 [2]

14 duration = 15

15 capture = discovery-duration-15

167

www.manaraa.com

16

17 [3]

18 duration = 20

19 capture = discovery-duration-20

20

21 [4]

22 duration = 25

23 capture = discovery-duration-25

D.3 Treatment 2: discovery-duration-fixed-capture.conf

1 [meta]

2 passes = 30

3 degrees = 360.0

4 bearing = 0.0

5 hop_int = 0.0

6 process = False

7 channel = 8

8

9 [0]

10 duration = 5

11 capture = discovery-duration-5

12

13 [1]

14 duration = 6

15 capture = discovery-duration-6

16

17 [2]

18 duration = 7

19 capture = discovery-duration-7

20

21 [1]

22 duration = 8

23 capture = discovery-duration-8

24

25 [2]

26 duration = 9

27 capture = discovery-duration-9

28

29 [3]

30 duration = 10

31 capture = discovery-duration-10

32

33 [4]

34 duration = 11

35 capture = discovery-duration-11

36

37 [5]

38 duration = 12

39 capture = discovery-duration-12

40

168

www.manaraa.com

41 [6]

42 duration = 13

43 capture = discovery-duration-13

D.4 Treatment 3: discovery-hop-capture.conf

1 [meta]

2 passes = 30

3 iface =

4 duration = 10

5 degrees = 360.0

6 bearing = 0.0

7 process = False

8

9 [0]

10 hop_int = 0.10138

11 capture = discovery-hop-0.10138

12

13 [1]

14 hop_int = 0.11162

15 capture = discovery-hop-0.11162

16

17 [2]

18 hop_int = 0.12186

19 capture = discovery-hop-0.12186

20

21 [3]

22 hop_int = 0.13210

23 capture = discovery-hop-0.13210

24

25 [4]

26 hop_int = 0.14234

27 capture = discovery-hop-0.14234

28

29 [5]

30 hop_int = 0.15258

31 capture = discovery-hop-0.15258

32

33 [6]

34 hop_int = 0.16282

35 capture = discovery-hop-0.16282

36

37 [7]

38 hop_int = 0.17306

39 capture = discovery-hop-0.17306

40

41 [8]

42 hop_int = 0.18330

43 capture = discovery-hop-0.18330

44

45 [9]

169

www.manaraa.com

46 hop_int = 0.1935

47 capture = discovery-hop-0.1935

48

49 [10]

50 hop_int = 0.2038

51 capture = discovery-hop-0.2038

D.5 Treatment 4: discovery-hop-dist-capture.conf

1 [meta]

2 passes = 30

3 duration = 15

4 degrees = 360.0

5 bearing = 0.0

6 hop_int = 0.183296

7 process = False

8

9 [0]

10 hop_dist = 1

11 capture = discovery-hop-dist-1

12

13 [1]

14 hop_dist = 2

15 capture = discovery-hop-dist-2

16

17 [2]

18 hop_dist = 3

19 capture = discovery-hop-dist-3

20

21 [3]

22 hop_dist = 4

23 capture = discovery-hop-dist-4

24

25 [4]

26 hop_dist = 5

27 capture = discovery-hop-dist-5

D.6 Treatment 5: capture-1-capture.conf

1 [meta]

2 passes = 150

3 iface =

4 duration = 20

5 hop_int = 0.18330

6 degrees = 360.0

7 bearing = 0.0

8 process = False

9

10 [0]

170

www.manaraa.com

11 test = capture-1

D.7 Treatment 6: capture-2-capture.conf

1 [meta]

2 passes = 150

3 iface =

4 duration = 20

5 hop_int = 0.18330

6 degrees = 360.0

7 bearing = 0.0

8 process = False

9

10 [0]

11 test = capture-2

D.8 Treatment 7: capture-3-capture.conf

1 [meta]

2 passes = 150

3 iface =

4 duration = 20

5 hop_int = 0.18330

6 degrees = 360.0

7 bearing = 0.0

8 process = False

9

10 [0]

11 test = capture-3

D.9 Treatment 8: capture-1-focused-capture.conf

1 [meta]

2 passes = 30

3 duration = 20

4 degrees = 360

5 bearing = 0

6 focused = 360,6

7 macs = 00:18:e7:e9:04:59,00:18:e7:e9:07:f5,00:12:17:9f:79:b6,00:16:b6:58:f3:0d, c
60:38:e0:06:2d:9c,60:38:e0:06:3a:d8,60:38:e0:06:34:e8,60:38:e0:06:34:ac, c
60:38:e0:06:3a:f0,1c:7e:e5:30:54:3e

↪→

↪→

8

9 [0]

10 test = capture-1

171

www.manaraa.com

D.10 Treatment 9: capture-2-focused-capture.conf

1 [meta]

2 passes = 30

3 duration = 20

4 degrees = 360

5 bearing = 0

6 focused = 360,6

7 macs = 00:18:e7:e9:04:59,00:18:e7:e9:07:f5,00:12:17:9f:79:b6,00:16:b6:58:f3:0d, c
60:38:e0:06:2d:9c,60:38:e0:06:3a:d8,60:38:e0:06:34:e8,60:38:e0:06:34:ac, c
60:38:e0:06:3a:f0,1c:7e:e5:30:54:3e

↪→

↪→

8

9 [0]

10 test = capture-2

172

www.manaraa.com

Appendix E. Additional Charts and Tables

Figure 32. PCHIP Prediction Histograms Per BSSID (Treatment 5)

173

www.manaraa.com

Figure 33. PCHIP Prediction Histograms Per BSSID (Treatment 6)

174

www.manaraa.com

Figure 34. PCHIP Prediction Histograms Per BSSID (Treatment 7)

175

www.manaraa.com

Table 19. Best Interpolation Method Per Sample Size

Sample Size Method Error

1 SLinear 26.75
2 Naive 19.44
3 PCHIP 17.44
4 PCHIP 14.08
5 PCHIP 13.08
6 PCHIP 12.09
7 PCHIP 12.60
8 PCHIP 12.60
9 PCHIP 12.70
10 BPoly 12.44
11 PCHIP 13.34
12 PCHIP 11.70
13 PCHIP 13.70
14 PCHIP 16.26
15 PCHIP 13.31
16 PCHIP 10.44
17 BPoly 8.49
18 Cubic 15.27
19 Linear 21.83
20 PCHIP 22.33
21 PCHIP 15.00

176

www.manaraa.com

Appendix F. Least Squares Ray Optimization: vectors.py

This script performed least squares optimization on multiple rays to find the point

closest to all rays.

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from mpl_toolkits.mplot3d import Axes3D

4 from scipy.optimize import least_squares

5 import math

6

7 import capmap

8 import pandas as pd

9

10

11 def locate(rays):

12 """

13 Determine the closest point to an arbitrary number of rays, and optionally

plot the results↪→

14

15 :param rays: list of ray tuples (S, D) where S is the starting point & D

is a unit vector↪→

16 :return: scipy.optimize.OptimizeResult object from

scipy.optimize.least_squares call↪→

17 """

18

19 # Generate a starting position, the dimension-wise mean of each ray's

starting position↪→

20 ray_start_positions = []

21 for ray in rays:

22 ray_start_positions.append(ray[0])

23 starting_P = np.stack(ray_start_positions).mean(axis=0).ravel()

24

25 # Start the least squares algorithm, passing the list of rays to our error

function↪→

26 ans = least_squares(distance_dimensionwise, starting_P, kwargs={'rays':

rays})↪→

27

28 return ans

29

30

31 def distance(P, rays):

32 """

33 Calculate the distance between a point and each ray

34

35 :param P: 1xd array representing coordinates of a point

36 :param rays: list of ray tuples (S, D) where S is the starting point & D

is a unit vector↪→

37 :return: nx1 array of closest distance from point P to each ray in

rays↪→

38 """

177

www.manaraa.com

39

40 # Generate array to hold calculated error distances

41 errors = np.full([len(rays),1], np.inf)

42

43 # For each ray, calculate the error and put in the errors array

44 for i, _ in enumerate(rays):

45 S, D = rays[i]

46 t_P = D.dot((P - S).T)/(D.dot(D.T))

47 if t_P > 0:

48 errors[i] = np.linalg.norm(P - (S + t_P * D))

49 else:

50 errors[i] = np.linalg.norm(P - S)

51

52 # Convert the error array to a vector (vs a nx1 matrix)

53 return errors.ravel()

54

55

56 def distance_dimensionwise(P, rays):

57 """

58 Calculate the distance between a point and each ray

59

60 :param P: 1xd array representing coordinates of a point

61 :param rays: list of ray tuples (S, D) where S is the starting point & D

is a unit vector↪→

62 :return: d*nx1 array of closest distance from each dimension of point

P to each ray in rays↪→

63 """

64

65 dims = len(rays[0][0][0])

66

67 # Generate array to hold calculated error distances

68 errors = np.full([len(rays)*dims,1], np.inf)

69

70 # For each ray, calculate the error and put in the errors array

71 for i, _ in enumerate(rays):

72 S, D = rays[i]

73 t_P = D.dot((P - S).T)/(D.dot(D.T))

74 if t_P > 0:

75 errors[i*dims:(i+1)*dims] = (P - (S + t_P * D)).T

76 else:

77 errors[i*dims:(i+1)*dims] = (P - S).T

78

79 # Convert the error array to a vector (vs a nx1 matrix)

80 return errors.ravel()

81

82

83 def plot_results(rays, ans, obj=None):

84 """

85 Plot the rays and the optimization results

86

87 :param rays: list of ray tuples (S, D) where S is the starting point & D

is a unit vector↪→

178

www.manaraa.com

88 :param ans: scipy.optimize.OptimizeResult object from

scipy.optimize.least_squares call↪→

89 """

90

91 dims = len(rays[0][0][0])

92 if 2 <= dims <= 3:

93

94 # Build up a matplotlib-friendly list of coordinate arrays

95 n_rays = len(rays)

96 POINTS = np.empty((n_rays, dims))

97 VECTORS = np.empty((n_rays, dims))

98

99 # Get coordinates from each ray

100 for i, ray in enumerate(rays):

101 for dim in range(dims):

102 POINTS[i, dim] = ray[0][0][dim]

103 VECTORS[i, dim] = ray[1][0][dim]

104

105 fig = plt.figure()

106 gca_kwargs = {}

107

108 quiver_args = []

109 quiver_kwargs = {}

110

111 vector_plot_args = [POINTS[:,0], POINTS[:,1]]

112 vector_plot_kwargs = {'linestyle':'None', 'marker':'o', 'color':'r'}

113

114 ans_x = ans.x.tolist()

115 loc_plot_args = [ans_x[0], ans_x[1]]

116 loc_plot_kwargs = {'marker':'D', 'c':'g'}

117

118 if isinstance(obj, np.ndarray):

119 object_plot_args = [obj[0][0], obj[0][1]]

120 object_plot_kwargs = {'marker':'x'}

121

122 if dims == 3:

123 gca_kwargs = {'projection':'3d'}

124 quiver_args = [POINTS[:,0], POINTS[:,1], POINTS[:,2], VECTORS[:,0],

VECTORS[:,1], VECTORS[:,2]]↪→

125 vector_plot_kwargs['zs'] = POINTS[:,2]

126 loc_plot_kwargs['zs'] = [ans_x[2]]

127 if isinstance(obj, np.ndarray):

128 object_plot_kwargs['zs'] = [obj[0][2]]

129 else:

130 quiver_args = [POINTS[:,0], POINTS[:,1], VECTORS[:,0], VECTORS[:,1]]

131 quiver_kwargs['scale'] = .5

132

133 ax = fig.gca(**gca_kwargs)

134 # Plot vectors

135 ax.quiver(*quiver_args, **quiver_kwargs)

136 # Plot vector origins

179

www.manaraa.com

137 ax.plot(*vector_plot_args, **vector_plot_kwargs, label='Capture

Location')↪→

138 # Plot calculated nearest point

139 ax.scatter(*loc_plot_args, **loc_plot_kwargs, label='Prediction')

140

141 if isinstance(obj, np.ndarray):

142 # Plot object

143 ax.scatter(*object_plot_args, **object_plot_kwargs, label='Emitter')

144

145 ax.axis('scaled')

146 xl = ax.get_xlim()

147 yl = ax.get_ylim()

148 xlen = abs(xl[0]-xl[1])

149 ylen = abs(yl[0]-yl[1])

150

151 if xlen > ylen:

152 buff = (xlen - ylen)/2

153 yn = (yl[0]-buff, yl[1]+buff)

154 xn = xl

155 else:

156 buff = (ylen - xlen)/2

157 xn = (xl[0]-buff, xl[1]+buff)

158 yn = yl

159

160 ax.set_xlim(xn)

161 ax.set_ylim(yn)

162

163

164 return ax, fig

165

166

167 def locate_random_rays(n=3, dims=3):

168 """

169 Helper function that generates random vectors to demonstrate location

technique↪→

170

171 :param n: The number of rays to generate

172 :param dims: The number of dimensions for each ray

173 :return: scipy.optimize.OptimizeResult object from

scipy.optimize.least_squares call↪→

174 """

175

176 from scipy.spatial.distance import cdist

177

178 # Distance to object the rays will be point to

179 dist_to_object = 50

180 # Area to space the rays starting points in

181 origin_area_width = 30

182 # Origin point of reference

183 origin = np.zeros((1,dims))

184

185 # Generate Object Position

180

www.manaraa.com

186 obj = origin

187 while cdist(obj, origin) < dist_to_object:

188 obj = np.random.randint(dist_to_object, 1.5*dist_to_object, (1,dims))

189

190 S = []

191 D = []

192

193 # Generate S

194 for i in range(n):

195 s = np.full((1,dims), np.inf)

196 while cdist(s, origin) > origin_area_width:

197 s = np.random. c
randint(-origin_area_width/2,origin_area_width/2,(1,dims))↪→

198 S.append(s)

199

200 # Generate D - Simply use the object location and add an element of random

error↪→

201 for i in range(n):

202 d = np.multiply(obj,np.random.uniform(.75,1.25, (1,dims)))

203 d = d - origin

204 D.append(d)

205

206 rays = list(zip(S, D))

207

208 ans = locate(rays)

209

210 plot_results(rays, ans, obj)

211 return ans

212

213

214 def locate_real_rays(rays, obj=None):

215 ans = locate(rays)

216 return plot_results(rays, ans, obj)

217

218

219 def bearing_to_vector(bearing):

220 """

221 Create a unit vector from a given bearing

222

223 :params bearing: A float bearing

224 """

225

226 bearing = math.radians(bearing % 360)

227

228 u = math.sin(bearing)

229 v = math.cos(bearing)

230 return np.array([[u,v]])

231

232 def get_point(test):

233 """

234 Get a test's location

235 """

181

www.manaraa.com

236 # Get an object location

237 _lat = pd.unique(capmap.bearings[capmap.bearings.test==test].lat_test)[0]

238 _lon = pd.unique(capmap.bearings[capmap.bearings.test==test].lon_test)[0]

239 return np.array([[_lat, _lon]])

240

241

242

182

www.manaraa.com

Bibliography

[1] Tim Levin. The Drone Noise Test. 2017. url: https://www.wetalkuav.
com/dji-drone-noise-test/ (visited on 01/01/2018).

[2] Ubiquiti. UniFi AP datasheet. 2012. url: https://www.ubnt.com/downloads/
datasheets/unifi/UniFi_AP_DS.pdf (visited on 01/17/2018).

[3] Ubiquiti. airMAX Omni. 2012. url: https://dl.ubnt.com/datasheets/
airmaxomni/amo_ds_web.pdf (visited on 01/17/2018).

[4] Alliance for Telecommunications Industry Solutions Inc. Radiodetermina-
tion. 2014. url: http://www.atis.org/glossary/definition.aspx?id=
2554.

[5] Ubiquiti. airMAX Datasheet. 2012. url: https://dl.ubnt.com/datasheets/
airmaxyagi/airMAX_900MHz_YAGI_Antenna.pdf (visited on 01/17/2018).

[6] Arvin Wen Tsui Tsui et al. “Accuracy performance analysis between war
driving and war walking in metropolitan Wi-Fi localization”. In: IEEE Trans-
actions on Mobile Computing 9.11 (2010), pp. 1551–1562.

[7] Yao-Hua Ho, Yu-Ren Chen, and Ling-Jyh Chen. “Krypto: Assisting Search
and Rescue Operations Using Wi-Fi Signal with UAV”. In: Proceedings of
the First Workshop on Micro Aerial Vehicle Networks, Systems, and Ap-
plications for Civilian Use. DroNet ’15. New York, NY, USA: ACM, 2015,
pp. 3–8. isbn: 978-1-4503-3501-0. doi: 10.1145/2750675.2750684. url:
http://doi.acm.org/10.1145/2750675.2750684.

[8] Teemu Roos et al. “A Probabilistic Approach to WLAN User Location Es-
timation”. In: International Journal of Wireless Information Networks 9.3
(2002), pp. 155–164.

[9] V Acuna et al. “Localization of WiFi Devices Using Probe Requests Cap-
tured at Unmanned Aerial Vehicles”. In: IEEE Wireless Communications
and Networking Conference, WCNC (2017). issn: 15253511. doi: 10.1109/
WCNC.2017.7925654.

[10] Wei Wang et al. “Feasibility Study of Mobile Phone WiFi Detection in Aerial
Search and Rescue Operations”. In: APSys (2013). doi: 10.1145/2500727.
2500729.

183

https://www.wetalkuav.com/dji-drone-noise-test/
https://www.wetalkuav.com/dji-drone-noise-test/
https://www.ubnt.com/downloads/datasheets/unifi/UniFi_AP_DS.pdf
https://www.ubnt.com/downloads/datasheets/unifi/UniFi_AP_DS.pdf
https://dl.ubnt.com/datasheets/airmaxomni/amo_ds_web.pdf
https://dl.ubnt.com/datasheets/airmaxomni/amo_ds_web.pdf
http://www.atis.org/glossary/definition.aspx?id=2554
http://www.atis.org/glossary/definition.aspx?id=2554
https://dl.ubnt.com/datasheets/airmaxyagi/airMAX_900MHz_YAGI_Antenna.pdf
https://dl.ubnt.com/datasheets/airmaxyagi/airMAX_900MHz_YAGI_Antenna.pdf
https://doi.org/10.1145/2750675.2750684
http://doi.acm.org/10.1145/2750675.2750684
https://doi.org/10.1109/WCNC.2017.7925654
https://doi.org/10.1109/WCNC.2017.7925654
https://doi.org/10.1145/2500727.2500729
https://doi.org/10.1145/2500727.2500729

www.manaraa.com

[11] Dahee Jeong, So Yeon Park, and Hyungjune Lee. “DroneNet: Network recon-
struction through sparse connectivity probing using distributed UAVs”. In:
IEEE International Symposium on Personal, Indoor and Mobile Radio Com-
munications, PIMRC 2015-Decem (2015), pp. 1797–1802. doi: 10.1109/
PIMRC.2015.7343590.

[12] Piotr Sapiezynski et al. “Opportunities and Challenges in Crowdsourced
Wardriving”. In: Proceedings of the 2015 ACM Conference on Internet Mea-
surement Conference - IMC ’15 (2015), pp. 267–273. doi: 10.1145/2815675.
2815711. url: http : / / dl . acm . org / citation . cfm ? doid = 2815675 .

2815711.

[13] Peter M Shipley. Biography. url: http://www.dis.org/shipley/.

[14] Google. Google Trends: Wardriving. 2018. url: https://trends.google.
com/trends/explore?q=wardriving (visited on 01/17/2018).

[15] Kismet. Kismet Documentation. 2018. url: https://raw.githubusercontent.
com/kismetwireless/kismet/master/README.

[16] Kipp Jones. “What Where Wi : An analysis of information leaked by millions
of wireless access points”. 2015. url: https://www.researchgate.net/
publication/254080435_What_Where_Wi_An_analysis_of_information_

leaked_by_millions_of_wireless_access_points.

[17] University of Washington. Wardriving Map of Seattle 2004. 2004. url: http:
//depts.washington.edu/wifimap/maps.html (visited on 09/02/2007).

[18] Bruce Schneier. “There’s No Real Difference Between Online Espionage
and Online Attack”. In: The Atlantic (Mar. 2014). url: https://www.

theatlantic.com/technology/archive/2014/03/theres- no- real-

difference-between-online-espionage-and-online-attack/284233/.

[19] Hak5. WiFi Pineapple. 2018. url: https://www.wifipineapple.com/

(visited on 01/01/2018).

[20] K Pelechrinis, M Iliofotou, and S V Krishnamurthy. “Denial of Service At-
tacks in Wireless Networks: The Case of Jammers”. In: IEEE Communi-
cations Surveys Tutorials 13.2 (2011), pp. 245–257. issn: 1553-877X. doi:
10.1109/SURV.2011.041110.00022.

[21] Pejman Najafi, Andreas Georgiou, and Dina Shachneva. “Privacy Leaks
from Wi-Fi Probing”. 2014. url: http://andreasgeo.com/wp-content/
uploads/2014/06/Privacy-Leaks-from-Wi-Fi-Probing.pdf.

184

https://doi.org/10.1109/PIMRC.2015.7343590
https://doi.org/10.1109/PIMRC.2015.7343590
https://doi.org/10.1145/2815675.2815711
https://doi.org/10.1145/2815675.2815711
http://dl.acm.org/citation.cfm?doid=2815675.2815711
http://dl.acm.org/citation.cfm?doid=2815675.2815711
http://www.dis.org/shipley/
https://trends.google.com/trends/explore?q=wardriving
https://trends.google.com/trends/explore?q=wardriving
https://raw.githubusercontent.com/kismetwireless/kismet/master/README
https://raw.githubusercontent.com/kismetwireless/kismet/master/README
https://www.researchgate.net/publication/254080435_What_Where_Wi_An_analysis_of_information_leaked_by_millions_of_wireless_access_points
https://www.researchgate.net/publication/254080435_What_Where_Wi_An_analysis_of_information_leaked_by_millions_of_wireless_access_points
https://www.researchgate.net/publication/254080435_What_Where_Wi_An_analysis_of_information_leaked_by_millions_of_wireless_access_points
http://depts.washington.edu/wifimap/maps.html
http://depts.washington.edu/wifimap/maps.html
https://www.theatlantic.com/technology/archive/2014/03/theres-no-real-difference-between-online-espionage-and-online-attack/284233/
https://www.theatlantic.com/technology/archive/2014/03/theres-no-real-difference-between-online-espionage-and-online-attack/284233/
https://www.theatlantic.com/technology/archive/2014/03/theres-no-real-difference-between-online-espionage-and-online-attack/284233/
https://www.wifipineapple.com/
https://doi.org/10.1109/SURV.2011.041110.00022
http://andreasgeo.com/wp-content/uploads/2014/06/Privacy-Leaks-from-Wi-Fi-Probing.pdf
http://andreasgeo.com/wp-content/uploads/2014/06/Privacy-Leaks-from-Wi-Fi-Probing.pdf

www.manaraa.com

[22] Edwin George Vattapparamban. “People Counting and occupancy Monitor-
ing using WiFi Probe Requests and Unmanned Aerial Vehicles”. In: (2016).
doi: 10.25148/etd.FIDC000246. url: http://digitalcommons.fiu.edu/
etd/2479.

[23] Cisco. Cisco Meraki Datasheet. 2017. url: https://meraki.cisco.com/
lib/pdf/meraki_datasheet_location_analytics.pdf (visited on 01/17/2018).

[24] Ricardo Aitken. How much weight can delivery drones carry? 2015. url:
https://web.archive.org/web/20170713001342/http://unmannedcargo.

org/how-much-weight-can-delivery-drones-carry/ (visited on 01/01/2018).

[25] W. M. Smart. Textbook On Sperical Astronomy. 4th. Cambridge: Cambridge
University Preses, 1949, pp. 18–19. url: https://ia800602.us.archive.
org/13/items/SphericalAstronomy/Smart-SphericalAstronomy_text.

pdf.

[26] International Astronomical Union. Astronomical Constants: Current Best
Estimates. Tech. rep. United States Naval Observatory, 2011. url: http:
//maia.usno.navy.mil/NSFA/NSFA_cbe.html.

[27] David R. Williams. Earth Fact Sheet. 2016. url: https://nssdc.gsfc.
nasa.gov/planetary/factsheet/earthfact.html (visited on 01/01/2018).

[28] J M Chambers et al. Graphical Methods for Data Analysis. 1983, p. 395.
isbn: 053498052X.

[29] The Pandas Community. pandas.Series.interpolate. url: https://pandas.
pydata.org/pandas-docs/stable/generated/pandas.Series.interpolate.

html (visited on 02/27/2018).

[30] The Scipy Community. scipy.interpolate. url: https://docs.scipy.org/
doc/scipy/reference/interpolate.html (visited on 02/27/2018).

185

https://doi.org/10.25148/etd.FIDC000246
http://digitalcommons.fiu.edu/etd/2479
http://digitalcommons.fiu.edu/etd/2479
https://meraki.cisco.com/lib/pdf/meraki_datasheet_location_analytics.pdf
https://meraki.cisco.com/lib/pdf/meraki_datasheet_location_analytics.pdf
https://web.archive.org/web/20170713001342/http://unmannedcargo.org/how-much-weight-can-delivery-drones-carry/
https://web.archive.org/web/20170713001342/http://unmannedcargo.org/how-much-weight-can-delivery-drones-carry/
https://ia800602.us.archive.org/13/items/SphericalAstronomy/Smart-SphericalAstronomy_text.pdf
https://ia800602.us.archive.org/13/items/SphericalAstronomy/Smart-SphericalAstronomy_text.pdf
https://ia800602.us.archive.org/13/items/SphericalAstronomy/Smart-SphericalAstronomy_text.pdf
http://maia.usno.navy.mil/NSFA/NSFA_cbe.html
http://maia.usno.navy.mil/NSFA/NSFA_cbe.html
https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.interpolate.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.interpolate.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.interpolate.html
https://docs.scipy.org/doc/scipy/reference/interpolate.html
https://docs.scipy.org/doc/scipy/reference/interpolate.html

www.manaraa.com

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

22–03–2018 Master’s Thesis Sept 2016 — Mar 2018

Passive Radiolocation of IEEE 802.11 Emitters Using Directional
Antennae

Law, Bradford E., Capt

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-18-M-040

Intentionally Left Blank

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

Low-cost commodity hardware and cheaper consumer drones make the threat of home-made, inexpensive DWAPs greater
than ever. Despite the vast leaps in technology these capabilities represent, UAVs are noisy and consequently difficult to
conceal as they approach a potential target. This research seeks to investigate using directional antennae on DWAPs by
resolving issues inhibiting directional antennae use on consumer and hobbyist drone platforms. This research presents the
hypothesis that a DWAP equipped with a directional antenna can predict bearings and locations of WAPs within an
acceptable margin of error.
A hardware prototype is constructed and a software framework (localizer) is built to capture data to determine optimal
parameters and measure bearing and location prediction accuracy. Bearing prediction is accurate to within 14°. For
location, a least-squares optimization of multiple rays is used to predict the location of WAPs and is accurate within
60 m; an in-depth analysis of these results is presented.

Radiolocation, UAV, Directional Antenna, Wireless Networking, Offensive Cyber Operations

U U U UU 204

Dr.Barry Mullins, AFIT/ENG

(937) 255-3636 x7979; barry.mullins@afit.edu

	Air Force Institute of Technology
	AFIT Scholar
	3-23-2018

	Passive Radiolocation of IEEE 802.11 Emitters using Directional Antennae
	Bradford E. Law
	Recommended Citation

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Terms and Abbreviations
	I. Introduction
	1.1 Background
	1.2 Problem Statement
	1.3 Research Goals
	1.4 Hypothesis
	1.4.1 Hypothesized Capture Method

	1.5 Approach
	1.6 Assumptions and Limitations
	1.7 Contributions
	1.8 Thesis Overview

	II. Background and Related Research
	2.1 Overview
	2.2 Radio Performance Comparisons
	2.2.1 Omnidirectional Antennae
	2.2.2 Directional Antennae

	2.3 Radiolocation
	2.3.1 received signal strength indication
	2.3.2 time of arrival
	2.3.3 time difference of arrival
	2.3.4 angle of arrival
	2.3.5 Triangulation
	2.3.6 Trilateration
	2.3.7 Weighted-Centroid-Based Algorithms
	2.3.8 Probabilistic-Based Algorithms
	2.3.9 Wi-Fi Principles

	2.4 Radiolocation Applications
	2.4.1 Emergency Response
	2.4.2 Wardriving
	2.4.3 computer network operations

	2.5 Sparse Data Interpolation
	2.6 Summary

	III. Prototype Design
	3.1 Overview
	3.2 Prototype Hardware
	3.3 Prototype Software
	3.4 Modules
	3.4.1 shell.py
	3.4.2 capture.py
	3.4.3 gps.py
	3.4.4 interface.py
	3.4.5 antenna.py
	3.4.6 process.py
	3.4.7 locate.py

	3.5 Summary

	IV. Methodology
	4.1 Overview
	4.2 System Under Test
	4.3 Experiment Objectives
	4.4 Parameters
	4.5 Metrics
	4.6 Experiment Environment
	4.7 Experimental Design
	4.7.1 Treatments
	4.7.2 Testing Process

	4.8 Summary

	V. Results and Analysis
	5.1 Overview
	5.2 Stepper Motor Missteps
	5.2.1 Temperature
	5.2.2 Reset Rate

	5.3 Parameter Discovery Analysis
	5.3.1 rr
	5.3.2 fcrr
	5.3.3 chi
	5.3.4 chd

	5.4 Positional Capture Analysis
	5.4.1 Interpolation
	5.4.2 Bearing Error Analysis
	5.4.3 Location Error Analysis

	5.5 Focused Capture Analysis
	5.5.1 fcw
	5.5.2 Focused Capture Analysis Summary

	5.6 Analysis Summary

	VI. Discussion and Conclusion
	6.1 Overview
	6.2 Research Conclusions
	6.3 Research Significance
	6.4 Future Work

	Appendix A. localizer Manual
	A.1 Initial Installation
	A.2 Interactive Shell
	A.2.1 Parameters
	A.2.2 Debug Logging
	A.2.3 HTTP Server
	A.2.4 Wide Capture
	A.2.5 Focused Capture
	A.2.6 Connect

	A.3 Batch Capture
	A.4 Batch Processing

	Appendix B. localizer Source Code
	B.1 Setup and Initialization Code
	B.1.1 setup.py
	B.1.2 localizer/main.py
	B.1.3 localizer/__init__.py

	B.2 Utilities
	B.2.1 localizer/meta.py
	B.2.2 localizer/locate.py
	B.2.3 localizer/shell.py

	B.3 Capture & Processing
	B.3.1 localizer/capture.py
	B.3.2 localizer/antenna.py
	B.3.3 localizer/gps.py
	B.3.4 localizer/interface.py
	B.3.5 localizer/process.py

	Appendix C. Utilities
	C.1 Sigmoid Model: model.py
	C.2 Coprime Hop Interval Generator: generate_hop_int.py

	Appendix D. localizer Capture Configurations
	D.1 Treatment 1a: discovery-duration-capture.conf
	D.2 Treatment 1b: discovery-duration-capture-2.conf
	D.3 Treatment 2: discovery-duration-fixed-capture.conf
	D.4 Treatment 3: discovery-hop-capture.conf
	D.5 Treatment 4: discovery-hop-dist-capture.conf
	D.6 Treatment 5: capture-1-capture.conf
	D.7 Treatment 6: capture-2-capture.conf
	D.8 Treatment 7: capture-3-capture.conf
	D.9 Treatment 8: capture-1-focused-capture.conf
	D.10 Treatment 9: capture-2-focused-capture.conf

	Appendix E. Additional Charts and Tables
	Appendix F. Least Squares Ray Optimization: vectors.py
	Bibliography

